
One way to reduce the anxiety of

using the command line is to

gain as much control over the

situation as possible. Bash, the default

shell in most GNU/ Linux distributions,

is no exception. If you know how to cus-

tomize Bash, you should start to lose the

sense of trauma (no doubt induced by

an exposure to DOS early in your com-

puting life) that seizes you when the

idea of using a command line is raised.

Of course, many customizations are

interesting only if you are a developer.

Frankly, listing every possible option

would require a column five or six times

the length of this one. Still, the examples

below can be interesting to users at any

level and give some sense of the possi-

bilities. They range from creating short

names for commands and changing de-

fault permissions to customizing the

look and feel of the command prompt

and the behavior of the Bash history.

The Files Involved
Before you begin, you should know that

all user accounts have potentially four

files associated with Bash. All are ordi-

narily hidden, but you can see which

ones are used by your distribution by

typing ls -a .bash*.

Two Bash files are of limited interest if

you are learning how to customize. The

.bash_history file is a list of previously en-

tered commands, one per line. Although

you can edit it in a text editor, most peo-

ple use the Up and Down arrow keys to

scroll through the history for a command

they want to reuse. The optional .bash_

logout file lets you run a script when Bash

exits, but it is often unused.

The other two Bash files are central for

configuration. The first, the .bashrc file,

contains basic settings for the history

and prompt options and is always pres-

ent. It is automatically re-created by the

/etc/bash.bashrc file if deleted. The sec-

ond is .bash_profile, which includes ad-

ditional options and configurations. If .

bash_profile is not present, the user ac-

count uses /etc/profile instead – the de-

fault for the entire system.

These files can be edited directly or

with the use of a command like export.

Changing the Path
The path is a list of directories the oper-

ating system looks to for commands that

you enter. It consists of all the paths de-

fined in /etc/profile plus any added to

.bash_profile in your home directory.

Should a command not be in the path,

you either have to enter a complete path

when you type the command or change

to the directory in which it is found –

neither of which is as convenient as sim-

ply entering the command and trusting

Bash to know where to look for it.

To add a directory to the path, you can

open your .bash_profile in a text editor

and search for the $PATH statement. If it

isn’t mentioned anywhere in the file,

you can enter the lines manually at the

end of the file. For instance, if I wanted

to add a /bin directory for executables to

my home directory, I would add:

PATH=$PATH:/home/bruce/bin

export PATH

Alternatively, I could modify the path

from the command line by first declaring

the path, then setting it:

PATH=$PATH:/usr/local/bin:U

/usr/bin:/bin:/usr/games:U

/home/bruce/bin

export PATH

If you ever decide that you do not need a

directory in your path, you can re-define

Ease into your comfort zone with these tips for customizing Bash.

BY BRUCE BYFIELD

Take control of the command line

PERSONAL SHELL

Command Line: Customizing BashLINUXUSER

90 ISSUE 104 JULY 2009

Iva
n

 M
ikh

ay
lov, 12

3
rf.co

m

it with the same two lines, simply omit-

ting the unneeded directory.

Short Names or Aliases
Commands can become long and in-

volved. Depending on the command, you

can have the basic command, any num-

ber of variables, a source file or directory,

and a target. In some cases, as with the

apt-get command, you can also have a

sub-command in addition to the basic

one. This structure can be hard to remem-

ber, and, to make matters worse, one mis-

take in syntax can have unexpected re-

sults or invalidate the command.

Thus, Bash allows you to define and

use shortcuts. You could create these

shortcuts by editing .bashrc in a text edi-

tor, but it is faster to use the built-in

commands alias and unalias. As you

might expect from the names, alias cre-

ates shortcuts, and unalias deletes them.

The structure of these commands is

simple. For example, if you always

wanted to see color-coded lists of direc-

tory contents, you might enter the com-

mand alias ls ='ls --color=auto'.

Technically, you should begin with

alias -p, but the -p option, which sends

the results to standard output, is unnec-

essary in all the distributions I’ve tried,

so you don’t need to bother with it.

Once you have defined this alias, in-

stead of always entering ls --color=auto,

all you have to do is type ls. This savings

of keystrokes can quickly add up if you

use the command line for file manage-

ment. You can do the same for any Bash

command or application, including one

for the desktop, if you choose. The obvi-

ous limitation is to choose a shortcut

that you are unlikely to enter by acci-

dent, although I suppose you might also

find – at least in theory – that an alias

creates a conflict between incompatible

options.

To delete a shortcut is even simpler:

Type unalias, followed by the name of

the shortcut. For instance, if you decide

that color-coding a directory listing isn’t

something you prefer after all (possibly

because you are color blind, or you pre-

fer the -F option to indicate file types by

a character at the end of the name), then

you would enter unalias ls.

This command would delete the alias,

but not, let me stress, the command ls it-

self. If you want to delete all aliases, the

command is simpler still: unalias -a.

To see a list of defined shortcuts, type

alias. If you use many aliases, you might

add comment lines (#) in .bashrc, ar-

range your shortcuts by function, then

view them in a text editor when you

need a reminder. One sample .bashrc

file I’ve seen had separate categories

for programming, desktop applications,

scripts, and half a dozen other purposes.

Another included common typos, so that

the user would not receive an error by

typing yum intsall instead of yum install

when adding packages to his Fedora

system. As these examples show, how

useful you find aliases depends entirely

on your patience and ingenuity.

Setting Default Permissions
As you probably know, permissions de-

fine how a file or directory can be used.

When you create a new file, it is auto-

matically given a default set of permis-

sions called the umask.

One way to summarize permissions is

with three digits. From left to right, they

are the permissions for the user account

from which the file was created, for those

in the same group as the creator, and for

all others logged in. Apparently for no

other reason than that the idea seemed

good at the time, each digit is a sum of

numbers in base 8 defining a permission.

Read permission is 4, write permission 2,

execute permission 1, and no permissions

0. This shorthand is called absolute

mode, symbolic permissions, or octal per-

missions, depending on your preference.

Under this system, a file that everyone

could read, write, and execute would

have a permission of 777. By contrast, a

file that the owner could read, write, and

execute, and that nobody else could use

at all, would have a permission of 700.

When you create a file and the system

assigns the default set of permissions,

the umask is defined in /etc/login.defs.

However, you can set the umask for each

account by adding the umask command

followed by the permissions (e.g., umask

700) to .bashrc.

Customizing the Prompt
The command prompt is the recurring

text that appears to the left of where you

start typing in a command. If you’re a

new user, you might not have paid much

attention to the prompt.

Nor do you absolutely need to these

days. In the days before desktops be-

came the norm, the prompt once held

useful information that you might want

at a glance, such as the current directory,

date, and time. Nowadays, when you

can get much of this information from

the desktop, you might not care so much

about the prompt.

Still, even today, you might find it

handy to have basic information always

visible, such as the current account and

directory, even if you are almost always

using a virtual terminal. For one thing,

you never know when you will need to

repair your system when you have no

desktop available. Moreover, if you look

at many distributions, you often find

that the final character in the prompt

tells you whether you are using a user or

root account; user account prompts end

in a dollar sign, whereas root account

prompts end in a hash sign (#).

In fact, once you look, you might no-

tice that different distributions have dif-Figure 1: The behavior of Bash is configured in four main files in your home directory.

\d the date

\h the hostname

\t the current time in 24-hour HH:MM:SS format

\T the current time in 12-hour HH:MM:SS format

\@ the current time in 12-hour am/ pm format

\A the current time in 24-hour HH:MM format

\u the username of the current user

\w the current working directory, with the top-level directory indicated as a tilde (~)

\W the base name of the current working directory, with the top-level directory indi-

cated as a tilde (~)

* \\ a backslash

Table 1: Selected Options for the Bash Prompt

LINUXUSERCommand Line: Customizing Bash

91ISSUE 104JULY 2009

ferent prompts on the basis of what infor-

mation they think users might want. For

example, if I were working in the /usr/

share directory on a computer called nan-

day, in Fedora, my default prompt would

be [bruce@conure share] $, whereas in

Debian, it would be bruce@nanday:/usr/

share$. From this difference, you might

correctly infer that Fedora’s defaults as-

sume that users stay largely in their home

directories because the full path is not

given, whereas Debian’s defaults assume

that their more advanced users might be

anywhere in the system and prefer not to

stop to use the pwd command to find out

where they are.

In addition, you might want to shorten

the prompt, especially if you are listing

current paths but tend to have directo-

ries nested five or six deep. Alterna-

tively, you might simply want to change

the color of the prompt to make it more

visible, to please your sense of aesthet-

ics, or to provide a more striking distinc-

tion between the root and everyday ac-

counts.

Whatever your reason, the best place

to start if you want to change your

prompt is by temporarily changing the

PS1 prompt parameter. These changes

will remain in effect until you either

change them yet again or close your cur-

rent virtual terminal. The next terminal

you open will revert to the default

prompt.

To begin, you want to view the current

settings for PS1, the variable for the

prompt, by entering the command echo

$PS1. Likely, you will get a response that

reads something like: [\u@\h \W]$,

which is the reading I get for a machine

with Fedora 10 installed. By comparing it

with the Fedora prompt mentioned

above, you can figure out what each

entry in it means. Notice, though, the

extra elements, such as the @ between

the username (\u) and hostname (\h)

and the space between the hostname and

the current directory (\W).

You can change this prompt temporar-

ily by referring to Table 1. I have not

bothered with some options that are un-

likely to be of interest to modern non-de-

velopers. If you are curious, you can eas-

ily find a complete list online with a

quick search.

For instance, if I wanted just to display

the current user account, I could make a

temporary change by running PS1="\u

$ " to produce the prompt bruce $. No-

tice that the space after the dollar sign is

not an error but was added deliberately

so that my typing is separate from the

prompt.

If I want to add color, I can change the

color of the characters according to the

formula:

"\e[x;ym\e[m "

In this formula, \e[marks the start of the

characters that the color applies to, \e[m

marks the end, and x;ym is the color

code (Table 2). The command to change

the prompt to dark red would be:

PS1="\e[0;31m[\u@\h \W]\$ \e[m "

If you substitute a 1 for the 0, you get a

lighter version of the same color.

Experiment with these temporary

changes until you have the prompt you

want. If you make a mistake, you can ei-

ther use the arrow keys to find an entry

in the command history from which you

can reverse the mistake or simply close

the window if you are working in a vir-

tual terminal.

When you figure out the prompt for-

mula that you want, open the .bashrc file

for your account in a text editor and re-

place the existing formula with the one

that you have devised. If you prefer, you

can also use the export command: for

example, export PS1="\e[0;31m[\u@\h

\W]\$ \e[m ".

History Options
The Bash history is a list of previously

used commands stored in .bash_history.

If you continually type the same or simi-

lar commands, you can use the Up and

Down arrow keys to scroll to the com-

mand you want to use.

The export command sets shell vari-

ables and is one way to customize the

Bash history. Or, edit .bashrc directly. To

set the number of commands stored in

the history to 1,200, either enter on the

command line or add to .bashrc:

export HISTFILESIZE=1200

Because .bash_history is a text file, it

does not require much memory, so you

have no reason not to use this setting to

increase the default size of 500 entries.

Of course, the larger the file, the more

scrolling you have to do to find an older

command, but you can always open .

bash_history in a text editor and use its

search function.

Another customization is to keep du-

plicate commands from being added to

.bash_history. For this option, enter:

export HISTCONTROL=erasedups

This customization ensures that .bash_

history contains only unique commands,

but it might mean that the command

you want requires extra scrolling, espe-

cially if you have just used a command

that already appears well down the list.

Only the Beginning
To go much beyond this point, you really

need to know some Bash scripting.

Scripting can expand the range of possi-

bilities in a huge way. In Debian, for ex-

ample, a script is used in .bash_logout to

clear the screen to ensure your privacy

when you exit the command line. The

examples described in this article are

simple enough to help you get started

and give you a glimpse of the possibili-

ties for customizing Bash. n

Black 0;30

Blue 0;34

Green 0;32

Cyan 0;36

Red 0;31

Purple 0;35

Brown 0;33

Table 2: Color Codes

Figure 2: A change of the Bash prompt lasts

only until the current session is closed. Like

any change of the prompt, it requires refer-

ence to a series of arcane symbols.

Figure 3: The Bash prompt is changed permanently, takes effect immediately, and remains in

effect the next time you start a shell.

Command Line: Customizing BashLINUXUSER

92 ISSUE 104 JULY 2009

