
We have all been there: You plug

in or connect to the wireless

network, and it doesn’t work

right. Then you try to ssh to your server

and you get “connection failed.” Trying

to connect to your mail server on port 25

using TLS (Transport Layer Security, aka

encryption) leaves you staring at the

banner for the local ISP’s mail proxy, or

you get another failed connection. But

all is not lost – at least you can surf the

web. Unfortunately, every time you mis-

type a URL, you end up at the ISP’s

search page, and anything with ques-

tionable content, such as hacking, is

blocked.

At this point, you have two choices:

find a good book to read, or use VPN

software to get a connection to a remote

host by bypassing whatever breakage or

filtering is occurring. However, some of

the really evil – or just plain incompetent

– ISPs also block common VPN software

and SSH in an effort to prevent unfet-

tered Internet access through their net-

works.

Much like trying to stop a cat from get-

ting into a cardboard box, if you try to

prevent geeks from doing something, the

chances are they will only try that much

harder.

If you can pass any form of data to a

remote system (IPSec, SSH, http, instant

messages, smoke signals), then you can

use that channel to carry anything you

want. An ISP can only block or filter so

much traffic before it becomes com-

pletely unusable. The trick is to find a

network protocol that is allowed and

that is not modified (much) on the fly

and that can do this with existing soft-

ware that lets you tunnel data over the

top of it.

Fortunately, three basic network proto-

cols – ICMP, DNS, and http – are almost

always allowed, as well as a wide variety

of other protocols, such as SSH and in-

stant messaging. If you are lucky, you

will be able to use software such as SSH

with port forwarding or VPN capabilities

over an allowed port, such as 80 (http).

If you are un-

lucky, the

ISP will

force you

through web proxies and their own DNS

servers in order to access the Internet.

Tunneling via ICMP
ICMP is a great protocol for tunneling

data because it’s almost always allowed

(blocking it breaks a great many things)

and can carry a lot of data [1]. An ICMP

packet has 20 bytes of data in the header

(the usual source, destination, etc.) and

8 bytes of payload data (type of mes-

sage, code, etc.), plus a variable amount

of other data. The amount of other data

sent in the ICMP packet is generally only

limited by the maximum packet size on

a given network (for Ethernet, generally

1,500 bytes), which is usually true for

most wireless networks too. This means

that you can send a lot of data over

ICMP packets with very little overhead.

When it comes to ICMP tunneling soft-

ware, you have a couple of options, but

your best bet is Ping Tunnel (Ptunnel)

because it’s the most up to date [2]. In-

stalling Ptunnel is relatively straightfor-

ward; RPMs for the second latest release

are available courtesy of Dag [3].

To install and build the source, enter:

rpm -Uvh http://dag.wieers.com/rpm/U

packages/ptunnel/U

ptunnel-0.61-1.rf.src.rpm

cd /usr/src/redhat/

rpmbuild -ba ptunnel.spec

If you want the most recent version of

Ping Tunnel, you’ll need to update the

source RPM or build it from source. To

update the source RPM:

wget http://www.cs.uit.no/~danielsU

/PingTunnel/PingTunnel-0.70.tar.gz

tar -xf PingTunnel-0.70.tar.gz

cd PingTunnel

make

make install

Because building it from source is a two-

line example, I leave updating the source

RPM as an exercise for the reader.

Moving data to and from Linux systems under the radar. BY KURT SEIFRIED

Covert communications on Linux

SECRET TUNNELS

Security LessonsSYSADMIN

64 ISSUE 104 JULY 2009

Running Ptunnel isn’t much more dif-

ficult. On the server side (the proxy),

you simply run Ptunnel with an optional

network device (-c) and a password (-x).

On the client side, you specify the ad-

dress of the proxy server, the local port

to listen on, and the remote address and

port to which you want to connect. The

following example assumes that a proxy

server at ptunnel.example.org is con-

nected to the Internet via eth0, with a

Squid proxy running on the server squid.

example.org on port 3128 and using the

password blahblah to secure the connec-

tion:

Server:

./ptunnel -c eth0 -x blahblah

Client:

./ptunnel -p ptunnel.example.org U

-lp 3128 -da squid.example.org U

-dp 3128 -x blahblah

Now just point your local web browser

at localhost port 3128 as a web proxy,

and your http traffic will be converted to

ICMP traffic and then sent to ptunnel.ex-

ample.org. There, it is unpacked and

sent on to the squid.example.org web

proxy server and then sent to the Inter-

net at large. The squid server can be run

locally on the same server running Ptun-

nel, which will allow you to bypass any

filtering and most network breakage

completely.

Tunneling via DNS
Although it is not quite as reliable as

ICMP, DNS is another protocol that can

be used to tunnel data. Some ISPs redi-

rect unregistered or unknown systems to

a payment gateway. To do this, they an-

swer any DNS query with the IP address

of the payment gateway. Other ISPs will

simply use a transparent web proxy to

intercept any WWW requests and redi-

rect them to their payment gateway (in

this case, you can probably tunnel your

traffic over DNS).

DNS offers several advantages over

ICMP. Although blocking ICMP does

cause problems, it can be done. On the

other hand, blocking DNS breaks every-

thing. Although Ping Tunnel 0.70 now

supports transmission of data over port

53 UDP, it doesn’t actually send valid

DNS packets, so you can’t pass this traf-

fic through DNS servers. For this, you

must have a direct connection to your

proxy server, in which case, you can

simply use OpenVPN or OpenSSH over

port 53.

For an actual proxy that encapsulates

the data in valid DNS packets, you have

a couple of options: OzymanDNS [4][5]

and NSTX [6]. Unfortunately, the NSTX

project hasn’t updated their source code

since 2002, and you will have to use CVS

to download it because the source pack-

ages seem to be gone. Additionally, be-

cause of several design issues, NSTX is

quite slow. With no updates since its ini-

tial release, OzymanDNS is also some-

what out of date.

Tunneling via Http
Your final option is to tunnel traffic over

http or https [7]. Chances are pretty

good that any network you are on will

allow outgoing https connections. Https

is better than http because https en-

crypts traffic, so the chance that the data

will be modified is less. As with the

ICMP tunneling software, you can either

build Proxytunnel from source or you

can download a source (or binary) RPM

[8] [9].

To use Proxytunnel, simply run it on

your server either as a standalone dae-

mon or from inetd, and on the client

side, add it as a ProxyCommand to your

OpenSSH client (Listing 1).

As you can see, are a variety of op-

tions are available for tunneling network

traffic over networks, depending on pro-

tocol availability. A little bit of setup in

advance can save you a lot of trouble

when you’re stuck on someone else’s

broken, filtered, or otherwise not-work-

ing network. n

[1] Project Loki – ICMP Tunneling:

http:// www. phrack. org/ issues. html?

 issue=49& id=6# article

[2] Ping Tunnel (Ptunnel): http:// www.

 cs. uit. no/ ~daniels/ PingTunnel/

[3] Ping Tunnel RPM: http:// dag. wieers.

 com/ rpm/ packages/ ptunnel/

[4] OzymanDNS:

http:// www. doxpara. com/ ? p=51

[5] OzymanDNS HOWTO: http:// www.

 dnstunnel. de/

[6] NSTX: http:// savannah. nongnu. org/

 projects/ nstx/

[7] Tunneling SSH over http(s):

http:// dag. wieers. com/ howto/

 ssh-http-tunneling/

[8] Proxytunnel:

http:// proxytunnel. sourceforge. net/

[9] Proxytunnel RPM: http:// dag. wieers.

 com/ rpm/ packages/ proxytunnel/

[10] SSH Port Forwarding article:

http:// magazine. redhat. com/ 2007/ 11/

 06/ ssh-port-forwarding/

[11] OpenSSH Layer 3 VPN:

http:// www. debian-administration.

 org/ article/ Setting_up_a_Layer_3_

tunneling_VPN_with_using_

OpenSSH

INFO

Virtually all systems have an SSH server,

and SSH clients are easy to come by [10].

If you can establish a direct TCP connec-

tion to port 80, you can simply run an SSH

server on port 80 (ListenAddress 10.2.3.4:

80 in sshd_config, but make sure you also

define Port 22 if you also want it to accept

connections on port 22 as usual) and en-

able port forwarding (AllowTcpForward-

ing set to yes in sshd_config).

ssh -L 8080:www.example.org:80 user@

ssh-server

Another option with SSH is to use its VPN

capabilities. The advantage of this is that

you can easily route all your traffic over

the connection (Instant Messenger, BitTor-

rent, etc.) [11].

SSH Port Forwarding and VPN Capabilities

01 Host proxytunnel.example.org

02 ProtocolKeepAlives 30

03 ProxyCommand /path/to/proxytunnel -p proxy.customer.com:8080 -u

user -s password -d proxytunnel.example.org:443

Listing 1: Proxytunnel

SYSADMINSecurity Lessons

65ISSUE 104JULY 2009

Kurt Seifried is an

Information Secu-

rity Consultant spe-

cializing in Linux

and networks since

1996. He often won-

ders how it is that technology works

on a large scale but often fails on a

small scale.

T
H

E
 A

U
T

H
O

R

