
Since the rise of low-cost virtual-

ization in 1999 with the first re-

lease of VMware Workstation,

the public has rallied around the many

benefits of virtualization. However, users

might often wonder how to minimize

the performance penalties they are pay-

ing when they work with virtualization

technology.

The exact shape of virtualization’s

performance footprint has evolved as the

field has matured. When 400MHz pro-

cessors were first appearing on the mar-

ket, the limiting factors posing an obsta-

cle to widespread use of virtualization

were CPU speed and RAM. This situa-

tion improved as Moore’s law continued

its inexorable march, providing both the

processing power and the memory space

sufficient for multiple virtual machines

to run at once on the same hardware,

and thereby opening the way for the

flourishing server virtualization market.

A second performance challenge

arises from the intrinsic ability of virtual-

ization to allow overcommitting of phys-

ical resources. Assigning more (virtual)

Virtual performance tuning is a lot like ordinary performance tuning – but not exactly.

BY FEDERICO LUCIFREDI

Tips for optimizing performance in virtual environments

Faster Virtue

Even before a single bit is rolled out to

your virtual and physical hardware, several

performance considerations enter the pic-

ture through deployment planning. The

first question is, “What workload should

be virtualized?” Although it is technically

possible to virtualize almost any service,

planners needs to choose with an eye to

performance: Quite obviously, a service

that is maxing out a particular system re-

source (network I/ O, disk I/ O, CPU) makes

for a poor virtualization candidate. One of

many ways to think about virtualization is

as a trade-off between spare capacity and

operational flexibility. If spare capacity is

absent, virtualization is not going to help

you out of your troubles.

Even as current virtualization solutions

sometimes deliver near-hardware perfor-

mance, in scenarios that aggregate multi-

ple virtual workloads on the same physical

host, you must take care that none of the

fundamental performance metrics of the

physical asset are exceeded by the com-

bined use of the hosted VMs. If you choose

to allow overcommitting of physical re-

sources, you should consider the total

throughput requirements of the workloads

committed to a given piece of hardware at

peak load, as these workloads are sharing

that 90 percent of physical performance

that your vendor is promising.

VM migration and an intelligent orchestra-

tion facility to manage it can address peak-

load collisions effectively and can simplify

one part of the planning process at the ex-

pense of another – namely implementation

of the resource management system itself.

Even when migration is part of the deploy-

ment process, the constant performance

objective coloring the operational picture

is to ensure that the combined require-

ments placed on a single host do not ex-

ceed the capacity on either the disk, net-

work, or CPU axis. Your excitement and en-

thusiasm for virtualization should not

cloud the obvious facts: Workload consoli-

dation allows better use of existing hard-

ware capacity, but no new resources are

magically “created” by the virtualized

setup.

Before Deployment

Teta
sto

ck, Foto
lia

Virtual PerformanceCover Story

20 ISSUE 103 JUNE 2009

processors to a set of virtual machines

than the physical machine happens to

have is an acceptable choice under a low

service load, but as one or more of the

hosted workloads experiences peak

usage, a dynamic resource load-balanc-

ing scheme is required. Virtual machine

migration, termination of VMs hosting

lower priority tasks, or equivalent ap-

proaches must be orchestrated through a

supervising logic to ensure that the ser-

vice level is guaranteed, even as the per-

formance “insurance” of physical ma-

chine separation is removed.

A third performance challenge rises

from the need to juggle workloads to

tackle performance measurement in a

virtualized environment: Adding a virtu-

alization layer to the complexity of to-

day’s system integration layouts in-

creases the number of factors that the

site administrator needs to manage for a

successful and efficient deployment.

In this article, I outline some vendor-

neutral tips for improving performance

in virtual environments.

Benchmarks
The original Xen team [1], VMware [2],

and the multiple Xen vendors have pro-

duced some excellent material describ-

ing the performance characteristics of

the hypervisor du jour. Without delving

into too many details, as a rule of

thumb, you can expect that a workload

suitable for virtualization, running as

the sole VM on a well-tuned hypervisor/

hardware combination, will deliver 85%

or better of the same hardware’s native

performance.

The mindset you should adopt when

looking at a new virtualization deploy-

ment is that you are looking to trade

CPU capacity for one or more of virtual-

ization’s advantages (server consolida-

tion, hardware independence, workload

migration, snapshot/ replay of state,

etc.). From that viewpoint, you will drill

down to the specific needs of the work-

load, but always keep in mind that you

are trading CPU for convenience.

Avenues for Better
Performance
One of the prominent decisions you will

make in your quest for “90 percent per-

formance” is whether to include in your

solution a kernel that has been paravir-

tualized with technologies such as VM-

ware’s Virtual Machine Interface (VMI)

or Microsoft’s hypercall adapter [5].

These technologies provide for a hyper-

visor-specific way to accelerate certain

aspects of the guest kernel’s operation.

The system call entry and return paths,

in particular, are significantly acceler-

ated, and virtualization’s memory man-

agement overhead is reduced in a way

that is significant for some workloads

[6]. Paravirtualized device drivers enable

conceptually similar hypervisor integra-

tion for operating system kernels that

have not been otherwise optimized to

work in a virtualized environment.

A key consideration when tackling vir-

tualization performance is that the old

physical performance lessons still apply

… if you know how and where to look.

The performance tuning process itself is

unchanged: When faced with a problem,

you use tools to take actual tangible

measurements of the situation, which

you then compare with your operational

baseline. Afterwards, locate the bottle-

necks this data highlights and eliminate

them, together with any contention

among your virtualized guests. The dif-

ference is that, in the traditional optimi-

zation process, you are looking at a sin-

gle host. Now you have to consider both

the workload guest, the virtualization

host/ hypervisor, and the interaction

with other guests that might be running

on the same physical iron. To do so, you

need a new set of tools that enable you

to form an overall impression by study-

ing the performance, looking across

guests, within a host, and within a

guest. Virtualization adds another layer

to the alchemy of the performance tun-

ing art, but it does not invalidate the old

craft, as long as the practitioner is aware

of the new “knobs” that virtualization

introduces in the additional abstraction

layer.

tooling Considerations
The tool chest is expanded in a way that

depends on the virtualization technology

of your choosing; however, the patterns

are the usual ones: Our old friend top is

supplemented by virtualization-aware

variants such as virt-top (Figure 1) or

esx top. One factor simplifying the pic-

ture of open source virtualization is that,

because most of the F/ OSS tools are im-

plemented against libvirt, they are intrin-

sically able to operate with Xen, KVM,

and potentially some container solutions

without any implementation changes. As

a result, virt-top (which provides disk

throughput and network traffic data

along with CPU measurements) and sim-

ilar tools, like virt-df, work on a variety

of virtualization platforms.

One needs to be careful with program

counters when using tools that are not

virtualization-aware: Because these tool

measure the cycles and performance of

the physical CPU as a whole (rather than

the “virtual CPU” slice assigned to a

given VM), the numerical results can be

off altogether. In most cases, the trend-

ing between different situations is cor-

rect, but the specific numbers will not

reflect actual values.

Another problem occurs with time:

Aside from the well-known issues of

clock-skew in virtualization, there is no

simple way for time to tell if the CPU

share assigned to a VM has significantly

changed at the hypervisor level. As a

new VM starts, a previously running VM

on the same system internally shows

that 90 percent of the CPU usermode al-

location is currently spent in the work-

load; however, an actual measure of the

As you choose your virtualization plat-

form, do not discount the potential of op-

erating system containers. Although con-

tainer virtualization systems such as the

open source OpenVZ are considerably

less hyped than full virtualization solu-

tions, container architectures are available

for just about every *nix platform. In the

most general terms, containers offer a

lesser degree of isolation than hypervisors

provide, in that they leverage the operat-

ing system’s process abstraction and they

might be limited to running a single kernel

version (or one that has been modified for

such use). Nonetheless, modern container

offerings make a perfectly palatable solu-

tion where the operational needs match

the design.

Vendor studies show that containers are

marginally faster than full virtualization

[3], but I recommend taking some time to

examine whether it is actually possible to

achieve a dramatically better result for

your specific workload and operational re-

quirements. If such a trade-off is suffi-

ciently significant, go for it; otherwise, you

should default to the full virtualization so-

lution, as it is generally more flexible.

Container Virtualization

Cover StoryVirtual Performance

21ISSUE 103JUNE 2009

workload performance shows that it is

now progressing at half the original rate

and taking twice as long to complete.

Yet, the guest-based measurements say

that the half-as-fast workload is still tak-

ing the same share of its virtual CPU as

it had before: From the point of view of

the guest, it is literally as if the CPU was

swapped in flight with a less powerful

one. Because this is not something ex-

pected by most programmers, such tools

might fail to produce correct results

when faced with this situation in a guest

environment.

Although the details of the tools them-

selves are strongly dependent on the vir-

tualization architecture, the coding strat-

egies are few and very clearly defined:

Just as practitioners of performance opti-

mization need to be familiar with uni-

versal operating system concepts (buff-

ering, caching, swapping, out of memory

behavior, process states, etc.), regardless

of whether the operating system is

Linux, Solaris, Windows, or otherwise,

those tuning virtualized environments

need to be familiar with the few alterna-

tive architectures that are used to

achieve isolation. Knowing how code ex-

ecution and memory access is virtual-

ized and how devices are mapped in

your specific implementation is neces-

sary if you want to understand and diag-

nose unusual behavior (e.g., increased

interrupt count, altered timing, modified

RAM footprint, etc.) [7]. A half a day

spent familiarizing yourself with such

details will pay back handsomely in time

saved later when faced with complex,

confusing, and misleading real-world

scenarios. The ability to debug interac-

tions between the guest and the virtual-

ization layer is the most important tool

you need to acquire: Most feedback

loops and other degenerate scenarios are

only apparent if

you know how the

magic works.

Best
Practices
As I mentioned

earlier, virtualiza-

tion is the art of

trading off one fa-

cility (the CPU)

for an otherwise

unavailable set of

functionalities. If

your workload saturates the CPU, you

should think twice before planning to

virtualize it. In addition to this all-impor-

tant criterion are some other suggestions

that will help you get the most from your

processor.

The first task is to examine whether it

is possible to “pin” a dedicated CPU (or

a core) to a specific virtual machine, ef-

fectively creating a mapping between

that VM’s virtual CPU and a dedicated

physical processor. Doing so drastically

reduces cache trashing, and as any per-

formance maven knows, modern proces-

sor performance is tied to cache hits

more than to any other single factor. If

this is not possible, it is generally wiser

to at least assign the same number of

CPUs to all VMs hosted on a given ma-

chine – even when overcommitting. This

strategy derives from the inherently sim-

pler picture that the hypervisor’s thread

scheduler will have to contend with if

the CPUs are balanced. Similarly, avoid

assigning more virtual CPUs than are

strictly necessary: If your workload can-

not make effective use of multiple cores,

avoid virtual SMP (Symmetric Multipro-

cessing) configurations – the additional

virtual CPU still requires interrupts and

creates overhead just by being present.

Of course, if your virtual guest is in-

deed SMP-enabled, you will want to

consider tuning affinity within the guest

to prevent too many processor migra-

tions from adversely affecting perfor-

mance. Make sure you are always using

the right kernel flavor: SMP for multiple

cores and uniprocessor for a single vir-

tual CPU. The uniprocessor kernel will

not make use of additional virtual CPUs,

and the SMP kernel carries additional

overhead, which is wasteful when a sin-

gle processor is in use. Another sugges-

tion is to remember that CPU affinity can

be assigned for IRQ requests as well as

threads under the Linux kernel: Consider

offloading the interrupt servicing to a

dedicated processor or spreading it uni-

formly where interrupt-intensive devices

(such as multiple network cards) are

present in your system.

Some virtualization architectures clev-

erly detect kernel idle loops and reduce

the VM’s scheduling priority, This strat-

egy can affect performance, and you will

Figure 1: The virtualization-aware virt-top is modeled on the classic

Unix top utility.

Numbers provided by your trusted vendor

are well and good, but even the most rep-

utable of third-party benchmarks won’t be

a perfect match for your hardware

choices. Ultimately, you will need to as-

sess your actual target environment. Cur-

rently, VMware’s VMmark [4] is a popular

choice for virtual performance bench-

marking. First released in 2006 and now at

version 1.1, VMmark differs from one-

workload benchmarks by creating a single

measurement for the virtualization envi-

ronment out of a variety of workloads con-

solidated on a hardware host and running

concurrently in separate virtual machines.

VMmark refers to the measured unit of

work performed by a collection of virtual

machines as a “tile.”

If you feel like studying your virtual sys-

tems with VMmark, start by downloading

the appropriate bits from the VMware site,

including the VMmark toolkit and one or

more workloads, some of which are neatly

pre-packaged as virtual appliances. Get-

ting VMmark running on your machines is

not as straightforward as rolling out other

VMware products, so you will want to

head straight for the /docs directory in

your VMmark package and start reading

through the Benchmarking Guide. The

Guide contains detailed checklists that will

help you navigate through the maze of re-

quired and optional steps needed to set

up the benchmark.

Once the hypervisor you want to test is

running on your benching hardware, you

will need to select the test workloads. Al-

though some test loads are effectively

supplied ready “out of the box” in their

virtual appliance, others require a more

convoluted set-up (because of licensing

limits on non-free components). Running

a full virtualization benchmark correctly is

not trivial, and will make considerable

hardware allocation as additional clients

are needed to drive each "tile."

Hardware Testing with VMmark

Virtual PerformanceCover Story

22 ISSUE 103 JUNE 2009

Anzeige
wird
separat
angeliefert

want to know the exact mechanics under

which this occurs in your system to de-

termine whether it is beneficial or harm-

ful to the workload.

The availability of shared memory

pages between multiple identical guests

is a very significant factor to consider

when choosing how your workload is

hosted: If multiple VMs are running on

the same host, you can gain a non-trivial

advantage by choosing to deploy the

same OS image for all the VMs, irrespec-

tive of any workload differences. If you

use the same image for all VMs on an ar-

chitecture on which shared memory

pages are well implemented, you will

achieve a significant reduction in the al-

location of actual physical RAM because

the multiple copies of those identical OS

pages are loaded in memory only once.

It is a good idea to spend some time

tuning virtual memory allocation for the

needs of the workload: You will want to

provide your virtual systems with a com-

fortable amount of RAM, which will

minimize, and possibly eliminate, the

need for swapping. Page faults in virtual

environments affect performance more

than in physical systems, and you

should avoid them as much as possible.

It is, however, also advisable to avoid as-

signing excessive amounts of memory,

in that this complicates the hypervisor’s

memory management work, which can

result in complex swapping situations if

multiple overcommitted VMs are run-

ning simultaneously and the hypervisor

must force one to yield resources.

Large page support can also improve

the performance of workloads that

would benefit from a similar setup in

non-virtual environments; benchmark

your load and determine whether the

change is helpful or detrimental in your

case. Finally, a significant number for

Linux guests is 896MB: Memory pages

up to this RAM size are mapped directly

into the kernel space, whereas those be-

yond this boundary require a slightly

more involved addressing scheme, an

unnecessary overhead if you can possi-

bly avoid it.

Mass storage benefits from simplifica-

tion just as other components do, and

you should avoid complex layouts when

they are unnecessary. One example seen

in the field is significantly degraded per-

formance with the use of LVM volumes

simultaneously on the guest and on the

host. LVM is hardly necessary for the

guest because the guest’s virtual disks

are inherently resizable and can be

structured on different physical storage

media. Swapping should be avoided as a

matter of course, but when you can’t

eliminate it, it makes sense to optimize it

by directing I/ O activity to different

physical disks.

Solid state units are great candidates

for fast swap, but one should also re-

member that, because of the properties

of zone bit recording (ZCAV), the outer

tracks of a standard hard drive provide

much higher raw data transfer rates than

the inner tracks. As you lay out your

physical partitions, keep this fact in

mind and spread the layout to multiple

disks if you can. Conversely, you will

want to avoid specific I/ O scheduler

choices within your guests: Their built-

in assumptions will most likely not hold

in a virtual environment. As a result, it

is often best to default to the NOOP

scheduler for the guests’ kernel because

the duty of optimizing read/ write perfor-

mance falls to the host and the complex-

ity of more sophisticated schemes at the

guest level will not be helpful and might

indeed be harmful.

To ensure optimum performance, de-

fragment disks, both virtual and physi-

cal. Just proceed from the guests out-

ward to the hosts, and take into consid-

eration the properties of snapshots in

your particular system. Incidentally, as

of this writing, several vendors recom-

mend SCSI virtual disks as offering the

best performing I/ O subsystem: The

EIDE bus, even a virtual one, is limited

to a single transaction at a time.

A study of network performance

would require another full article. Some

common pitfalls include the use of a vir-

tual driver that is sub-optimal (the typi-

cal example is the use of VMware’s

vlance instead of the more optimized

vmxnet) or the unrecognized failure of

duplex auto-negotiation. Performance

tuning of the network side of virtualiza-

tion is evolving rapidly with the appear-

ance of hardware-assist technologies

such as Virtual Machine Device Queues

(VMDQs), which offload the burden of

network I/ O management from the hy-

pervisor into NIC hardware that sup-

ports multiple parallel queues.

Because much attention is paid to the

low-level details, higher level decisions,

such as what network protocols to use

for data storage, warrant significant con-

sideration, too. Recent results show that

iSCSI in both software and hardware im-

plementations and NFS are largely com-

parable solutions [9] , with the more ex-

pensive Fibre Channel still standing out

as providing significant improvement.

Conclusions
Carefully choose a workload, simplify

the configuration of the virtual machine

it will run within, and proceed to perfor-

mance characterization and tuning.

These simple steps are but a start; many

specific details inherent to your chosen

virtualization technology will have to

enter the picture as you test and mea-

sure to achieve your target performance.

After you repeat the process a few

times, you will learn to value predictable

VMs that can be accommodated with

static resource allocations, in that they

are much easier to plan for than those

whose resource usage expands and con-

tracts unpredictably; such guests make

poor neighbors to other workloads. n

[1] Xen and the Art of Virtualization:

http:// www. cl. cam. ac. uk/ research/

 srg/ netos/ papers/ 2003-xensosp. pdf

[2] A Performance Comparison of

 Hypervisors: http:// www. vmware.

 com/ pdf/ hypervisor_performance. pdf

[3] Container-Based Operating System

Virtualization:

http:// www. cs. princeton. edu/ ~mef/

 research/ vserver/ paper. pdf

[4] VMmark: A Scalable Benchmark for

Virtualized Systems: http:// www.

 vmware. com/ pdf/ vmmark_intro. pdf

[5] Hypervisor Functional Specification:

http:// www. microsoft. com/

 downloads/ details. aspx? FamilyId=9

1E2E518-C62C-4FF2-8E50-3A37EA41

00F5& displaylang=en

[6] Performance of WMware VMI:

http:// www. vmware. com/ pdf/

 VMware_VMI_performance. pdf

[7] A Comparison of Software and

Hardware Techniques for x86

 Virtualization: http:// www. vmware.

 com/ pdf/ asplos235_adams. pdf

[8] VProbes Programming Reference:

http:// www. vmware. com/ pdf/ ws65_

vprobes_reference. pdf

[9] Comparison of Storage Protocol

Performance:

http:// www. vmware. com/ files/ pdf/

 storage_protocol_perf. pdf

INFO

Virtual PerformanceCover Story

24 ISSUE 103 JUNE 2009

