
ike many, I grew up programming

in C and C++ before moving

into LAMP-land and Python, Perl,

and PHP. But like that first car, first date,

and first paycheck, everyone has a spe-

cial memory of the first time they com-

piled gibberish into executable machine

code.

Thanks to GCC, open source develop-

ers have never had any issues writing C

or C++ code on a Linux platform.

However, when Microsoft announced

their .NET initiative and the intention to

focus their efforts around C#, few people

expected Microsoft to release a Linux cli-

ent for their “platform-independent” de-

velopment tool.

Fortunately, .NET’s Common Lan-

guage Infrastructure (CLI) and the C#

programming language are codified as

ECMA (a non-profit standards body) and

ISO international standards, which cre-

ates the possibility for independent im-

plementations. The DotGNU project was

started with huge fanfare to bring stan-

dards-compliant C# to Linux. Over the

years, DotGNU has received less atten-

tion than the other .NET for Linux: the

Novell-sponsored Mono project. Never-

theless, the project is still chugging

along, and it is even finding some use in

commercial applications.

Although DotGNU has lost some of its

steam in recent years, it is still in active

development. Certainly one cannot com-

pare the pace of development with that

of Mono – or even with its own initial

activity – but that’s mainly because, at

DotGNU, the emphasis is on standards

compliance and staying free of license

restrictions, rather than on being com-

patible with the latest from the Microsoft

camp. As DotGNU developer Klaus Tre-

ichel points out, it is unfair to compare

DotGNU with Mono because Mono has

full-time developers paid by a large com-

pany. DotGNU has always been a volun-

tary project supported with donations.

One such donation was from Trumpf

Group, which has a pulsed laser cutting

tool that uses DotGNU. The touch screen

user interface of the laser tool was built

through the use of DotGNU.

Although some parts of the Mono en-

vironment (including the C# compiler)

are released under the GPL, other parts

are subject to license and patent con-

cerns that reflect the complex business

relationships between Novell and Micro-

soft. Fortunately for us, then, the Dot-

GNU project offers a vendor-indepen-

Write C# programs in Linux with the free and vendor-neutral DotGNU.

BY MAYANK SHARMA

DotGNU

22 ISSUE 102 MAY 2009

dent alternative for open source pro-

grammers who want to try their luck

with C# and .NET.

DotGNU is more than just a C# compiler,

but I’ll start off with that. Portable.Net is

the free implementation of .NET, and it

contains a run-time engine, a C# com-

piler, and a host of other tools that make

Portable.Net easy to port to other plat-

forms. All these components are written

in C. The aim of the project is to make

the development of .NET apps easy on

non-Microsoft platforms.

In the early days of development, the

C# system library was split from the

main Portable.Net distribution. The li-

braries are now available as part of the

pnetlib package. Another important

component is treecc, an aspect-oriented

programming tool that assists in devel-

opment with the DotGNU C# compiler.

For writing web services, DotGNU re-

lies on the DotGNU Execution Environ-

ment, or DGEE, and phpGroupWare.

DGEE is a web-service server that can

accept and process XML-RPC requests

from web services, and it can generate

browsable documentation for these ser-

vices in HTML or XML. phpGroupWare

is a groupware suite that also provides

a host of web-service components.

The DotGNU C# compiler also com-

piles programs written in C, thanks to

the libc implementation of the C com-

piler, pnetC. Because DotGNU’s objective

is to follow the standards, rather than

follow Microsoft, the implementation

lacks a few assemblies. To help develop-

ers use the missing bits, the DotGNU

folks distribute some of the libraries

from the Mono project. This distribution

of the Mono libraries is achieved via the

build scripts in the ml-pnet package.

One of the main reasons for writing C#

code in DotGNU is that it is compatible

with the EMCA standards for C# and the

CLI. Furthermore, DotGNU also is com-

patible with Microsoft’s own CLI imple-

mentation of the .NET framework.

Thanks to the modular design of Por-

table.Net, the DotGNU C# compiler can

run on multiple platforms. Portable.Net’s

run-time engine and the C# class library

have extensive support for embedded

system profiles and can be built with dif-

ferent ECMA profiles. Each profile en-

ables or disables features in the system.

As a testament to its portability, one of

the founding develop-

ers, Gopal Vijayaragha-

van, was able to get

Portable.Net running

on the Indian hand-held

computer, the Encore

Simputer, during the

three days of FOSS.IN

in Bangalore.

Programmers also

will appreciate the self-

contained nature of

DotGNU and that it

doesn’t depend on ex-

ternal libraries. A much-

discussed feature of

DotGNU is its imple-

mentation of the Sys-

tem.Windows.Forms li-

brary, which is used to build GUIs. Sys-

tem.Windows.Forms simplifies develop-

ment by reducing dependence on other

toolkits.

Some distro repositories carry DotGNU

binaries, but it’s a good idea to compile

them from source. The tarballs are avail-

able on the DotGNU website [1], and

you can also fetch them via CVS.

To get the compiler and libraries, in-

stall treecc, pnet, and the pnetlib pack-

ages. Optionally, the ml-pnet package

lets you work with Mono’s libraries, and

the pnetC package enables the DotGNU

compiler to compile C programs.

The command:

cvs -z3 -d:pserver:anonymous

@cvs.sv.gnu.org:/sources/

dotgnu-pnet co .

downloads the latest source of all Dot-

GNU packages inside the directory it is

issued from, so make sure it is under

something like /opt/dotgnu. Now change

to each directory and run ./auto_gen.sh

for all the packages to generate the con-

figuration and make files. Once that’s

completed, or if you just grabbed the tar-

ball instead of checking out via CVS, the

usual ./configure, make, make install

(the last one, as usual, as root) will in-

stall the DotGNU compiler and libraries.

For those who speak binary, DotGNU

works by transforming bytecode into a

simple instruction set that is passed on

01 using System;

02 public class HelloWorld

03 {

04 public static void Main (string [] args)

05 {

06 if (args.Length != 1)

07 {

08 Console.Error.WriteLine("You

must tell me your name.");

09 Environment.Exit(-1);

10 }

11 string name = args[0];

12 Console.WriteLine ("Hello, {0}!",

name);

13 }

14 }

Listing 1: Hello.cs

DotGNU

23ISSUE 102MAY 2009

Anzeige
wird
separat
angeliefert

Anzeige
wird
separat
angeliefert

to a virtual machine to be executed via

an interpreter. This design makes Dot-

GNU easily portable and explains the

number of supported platforms.

The components you’ll use are the

ilrun run-time engine, which executes

the binaries doled out via the cscc com-

piler, and cscc some-program.cs, which

produces a file called a.out. This file can

then be executed with:

ilrun a.out

With the -o switch, you can specify a file

name when compiling your program

with cscc – for instance:

cscc -o some-program.exe

some-program.cs

To print debugging information, use the

-v switch while compiling.

If you have to link against a particular

library, say System.Drawing, you’ll need

to point this out to the compiler with the

-lLIBRARY switch, which will search for

the libraries DLL along the library search

path. If you are compiling a GUI program

that uses the System.Windows.Forms

 library, you can also use the -winforms

switch, which automatically links all the

libraries required to process a Win-

Forms-dependent program. Sometimes

you’ll have to create your own DLL li-

braries. The -shared switch will produce

these DLLs instead of a .exe.

In addition to C#, the DotGNU com-

piler can also compile to Java Virtual

Machine bytecode with the -mjvm

switch. Remember to use the .jar file

 extension instead of .exe or .dll.

After that brief introduction to the com-

piler and common options, I’ll honor

the long tradition of coding tutorials by

writing a “Hello, World” program in C#

(Listing 1) and compiling it with cscc -o

hello.exe hello.cs.

The simple program contains only one

method: Main(). Command-line argu-

ments are passed to this method as an

array of string objects by way of the Sys-

tem library and its various classes and

methods. System.Environment.Exit()

exits the program and sends a return

code to the shell. The System.Console

class interfaces the command line to

the program. The Console.Writeline()

method writes the greeting to standard

output, and Console.Error.Writeline()

writes to standard error.

Listing 1 greets the user with a name

slipped in as input. But why enter a

name for the user when a name is prob-

ably already defined on the system?

Using the System.Collections library, you

can, among other things, display the

contents of all the environment vari-

ables. If you modify the hello.cs program

to use the System.Collections library

(Listing 2), you can read the username

of the user executing the program with

value = Environment.Get En vi ron ment-

Variable("USER"), wherein value is a

String type variable.

One of the best bits about DotGNU is an

implementation of the System.Windows.

Forms library that doesn’t require trans-

lation via other popular toolkits such as

Gtk. Much like the Java Swing library,

DotGNU’s System.Windows.Forms draws

its own controls.

To compile the code in Listing 3, use:

cscc -o form.exe form.cs

-winforms.

The code displays a simple re-sizable

window with the usual minimize, maxi-

mize, and close controls.

01 using System;

02 using System.Windows.Forms;

03

04 public class MyForm : Form

05 {

06 public MyForm ()

07 {

08 this.Text = "The beginnings of a multi-tab

text editor";

09 this.Height = 600;

10 this.Width = 800;

11 }

12 }

13

14

15 public class MyApp

16 {

17 public static void Main(string[] args)

18 {

19 App.Run(new MyForm());

20 }

21 }

Listing 3: Using System.Windows.Forms

01 using System;

02 using System.Collections;

03

04 public class HelloWorld

05 {

06 public static void Main()

07 {

08 String value;

09 value = Environment.

GetEnvironmentVariable("USER");

10 if(value != null)

11 {

12 Console.WriteLine("Hello,

{0}!", value);

13 }

14 else

15 {

16 Console.WriteLine("Sorry, you

apparently don't have a name!");

17 }

18 }

19 }

Listing 2: Hello-Advanced.cs

DotGNU

26 ISSUE 102 MAY 2009

The next step is to add a menu to this

window. The complete listing is avail-

able on the magazine website [2], but

the most important bits are in Listing 4.

A custom class called MyMenu inherits

from the System.Windows.Forms.Main-

Menu class and is used to create the

menu items. The menu item variables

are of the MenuItem type, which is spe-

cifically used to create items within a

menu or a context menu.

The MyMenu() constructor creates the

File menu item with the new keyword.

Similarly, Listing 4 creates an instance of

the three menu items and specifies how

they’ll appear in the menu. Because I al-

ready have the File menu ready, I use the

Add() method to add the three menu

items to the main menu.

For the first-time GUI programmer, this

procedure might be a little overwhelm-

ing, but really it couldn’t be simpler. The

various System.Windows.Forms methods

take care of adding GUI functionality to

the menu and the items, so that when

you compile and run the code, the File

menu will function as it does in any GUI

application: First you click to display the

items, and then you click to fold them

back in.

Of course, you still have to associate

your menu with your original form code

and program event handlers for the vari-

ous items to get them to work. Also,

you’ll have to tie these event handlers to

the particular menu item’s click event.

Further on, you have to create dialog

boxes and add functionality to them

with the use of buttons to save the file

and do other tasks.

Several books and tutorials on C# can be

found on the Internet. The advantage of

DotGNU is that it is completely stan-

dards compliant; therefore, you can use

documentation from Microsoft’s C# li-

brary. To get things done faster, you can

use front ends, such as Microsoft’s Vi-

sual Studio and Mono’s MonoDevelop

IDE [3]. But if you want to write truly

portable code with DotGNU, you’ll have

to be extra careful with these tools and

make sure you stay away from features

unique to a particular platform. p

Mayank Sharma has written for vari-

ous Linux publications, including

Linux.com, IBMdeveloperWorks, and

Linux Format, and he has published

two books through Packt on adminis-

tering Elgg and Openfire. Occasion-

ally he teaches FLOSS technologies.

You can reach him at:

http://www. geekybodhi. net.

T
H

E
 A

U
T

H
O

R

[1] DotGNU website:

http:// www. gnu. org/ software/

 dotgnu/

[2] Listings for this article:

http:// www. linux-magazine. com/

 resources/ article_code

[3] MonoDevelop:

http:// monodevelop. com/

[4] DotGNU library definitions:

http:// www. gnu. org/ software/

 dotgnu/ pnetlib-doc/

[5] Library status:

http:// www. gnu. org/ software/

 dotgnu/ pnetlib-status/

INFO

C# borrows a bit from several popular lan-

guages, including C, C++, and Java. If

you’ve programmed in Java, you’ll find

that, in C#, you can have a class name

with a name that’s not the same as the

source file. Similar to Java, and unlike the

C languages, C# doesn’t have header files.

Plus, you have the flexibility of either im-

porting a namespace or specifying it fully

when using a function like System.Con-

sole.Writeline. Again, this has the Java

footprint all over it.

Also note that the C++ :: operator isn’t re-

quired in C#. The task of referencing class

members is accomplished with the dot (.)

operator.

All the most important C# libraries are im-

plemented in DotGNU. The library lineup

includes the core System library that

(among other things) contains classes for

handling data types, the System.Collec-

tions library that helps define and traverse

objects such as lists and arrays, System.IO

for reading and writing streams and files,

System.Net for network programming,

System.Security for making your pro-

grams respect permissions, and, of

course, System.Windows.Forms for creat-

ing GUIs.

However, some libraries are not directly

available, such as System.Data, which

provides classes to implement the ActiveX

Data Object, or ADO for reading and writ-

ing data from various data stores such as

databases. But you can use the ADO li-

brary via the ml-pnet package.

DotGNU-specific definitions for the pack-

aged libraries are available online [4], al-

though they are not complete, and it is

possible that a function might not be de-

fined there but available nonetheless.

Some of the libraries do have missing

constructs and methods, and you can also

learn more about these elements online

[5]. However, this information might not

be up to date.

Languages and Libraries

01 public class MyMenu : System.Windows.Forms.MainMenu

02 {

03 public System.Windows.Forms.MenuItem mFile;

04 public System.Windows.Forms.MenuItem mFileNew;

05 public System.Windows.Forms.MenuItem mFileSave;

06 public System.Windows.Forms.MenuItem mFileExit;

07

08 public MyMenu()

09 {

10 mFile = new MenuItem("&File");

11 this.MenuItems.Add(mFile);

12

13 mFileNew = new MenuItem("&New");

14 mFileSave = new MenuItem("&Save");

15 mFileExit = new MenuItem("E&xit");

16

17 mFile.MenuItems.Add(mFileNew);

18 mFile.MenuItems.Add(mFileSave);

19 mFile.MenuItems.Add(mFileExit);

20 }

21 }

Listing 4: Advanced Form Controls

DotGNU

27ISSUE 102MAY 2009

