
fengine [1] is a flexible frame-

work for automating system ad-

ministration tasks. With Cfen-

gine, you can manage one machine or a

heterogeneous network. The first version

of Cfengine was released more than 15

years ago by Mark Burgess, a professor

at Oslo University. According to usage

estimates, Cfengine has managed more

than 1 million computers over the years.

Version 3 of the Cfengine framework

rolls out some new capabilities and does

away with all the old historical layers.

The developers have even retooled the

language so that all elements are han-

dled in a uniform way.

To show what is possible with Cfen-

gine 3, I introduce various Cfengine

components in a running example. To

follow along, you need two networked

Linux machines that I call PolicyServer

and Client. The end goal is to have the

client machine running a fully config-

ured and managed Apache web server,

with no manual configuration required,

other than installing Cfengine.

The basic model I use will store and

distribute all of the policy code centrally

from a single server. Cfengine can be

used many ways because it is very flexi-

ble, but this is a common design, and it

serves many sys admins well. Policy-

Server will hold and make available the

central repository of Cfengine code, and

the Client machine will receive the

Apache configuration.

First, install Cfengine on both the client

and server. Packages are available for

many popular Linux distributions, or

you can build the tool from source code.

CFengine 3 has very few build-time

dependencies and even fewer run-time

dependencies (only OpenSSL libcrypto

and Berkeley DB libdb). Although not

strictly necessary, the Perl-compatible

regular expression library (libpcre) also

contributes significantly to Cfengine.

If you are building Cfengine from

source, first obtain the latest Cfengine 2

and 3 tarballs from the project website

[2]. Also, you need Flex, Bison, and

Make to compile Cfengine, as well as the

static library libcfengine from Cfengine

2. Once you have the dependencies in

place, first build Cfengine 2, then Cfen-

gine 3 (you can use the same procedure

for both):

./configure

make

sudo make install # Or use su

Automate admin tasks with the powerful Cfengine framework.

BY BRENDAN STREJCEK

Cfengine is built around a number of design principles. In general, the language is de-

scriptive rather than iterative: As much as is possible, you are attempting to describe the

“what” of the system rather than the “how.” In practice, this approach usually means

that Cfengine actions are idempotent; that is, applying the same function twice will re-

sult in the same result. This characteristic is important because Cfengine continually

monitors the state of your nodes and, depending on how you write your policy, corrects

any divergences.

Another principle that Cfengine adheres to is the “pull” architecture, which means that

clients request new policy code from a server. This behavior is in contrast to the “push”

system, which requires a central node to connect periodically to all clients to configure

them. The use of a pull architecture allows you to configure a machine that is down or

not yet built because any changes will be picked up automatically when the machine

comes onto the network. Cfengine has the facilities to do a push if you really need it, but

even these features are built around an underlying pull mechanism. The pull principle

also has important implications for the autonomy of the configured node: If the Cfengine

server crashes, or if it is unavailable to the client for some reason, the client can continue

to use its cached policy until the next time it can connect successfully.

Design Principles

Cfengine 3

22 ISSUE 101 APRIL 2009

022-028_cfengine.indd 22 11.02.2009 15:42:57 Uhr

By default, files are installed to /usr/

local, but you can change this by adding

the --prefix=/some/other/path argument

to configure, although you need to make

sure that the Cfengine build process can

find libcfengine. All the binaries are in-

stalled in sbin under the relevant prefix

(by default, /usr/local/sbin). The next

version of Cfengine, 3.0.1, due for re-

lease later this year, will not require lib-

cfengine, so this is just an intermediate

measure.

With the software safely installed on the

server and client, you are ready for a

first look at Cfengine in action. A simple

“Hello, World” example will demon-

strate a working Cfengine 3 program

First, run cf-key with no arguments. This

command creates some dot files in your

home directory and generates a keypair

(which you won’t need right away, but it

is necessary for remote copies).

This “Hello, World” program will be

written for cf-agent, which is the pro-

gram that does the bulk of the configura-

tion work in Cfengine. cf-agent monitors

system state and applies corrective ac-

tion when necessary. Much as perl and

sh binaries are interpreters for Perl and

the Bourne shell, respectively, you can

think of cf-agent as a command inter-

preter for the Cfengine language. By de-

fault, as an unprivileged user, cf-agent

reads and executes code in ~/.cfagent/

input/promises.cf. So, with your favorite

editor, create that file and enter:

body common control {

 bundlesequence => { "hello" };

}

bundle agent hello {

reports:

 linux::

 # This is a comment

 "Hello, world.";

}

White space does not matter in the Cfen-

gine language, so you can indent this

code as you see fit. With no arguments

at the shell, go ahead and run it with

cf-agent. It doesn’t matter which of the

two machines you run this on because

you have installed the software on both.

As you can see, the two main entities

present in the code are a body named

control and a bundle named hello. Bun-

dles are the primary statement aggrega-

tion construct in Cfengine (in the same

way that a function is the primary con-

struct of C, although bundles are not

functions in a mathematical sense). Bod-

ies are groupings of parameters. Both the

body and the bundle specify which com-

ponent of Cfengine they are to be con-

sumed by; in the case of the control

body, the consumer is common, a special

keyword meaning the Cfengine suite as a

whole, and in the case, of the hello bun-

dle, the consumer is agent, which refers

to the Cfengine binary cf-agent.

The name of the bundle, hello, is refer-

enced in bundlesequence, which is a spe-

cial directive that tells cf-agent what

code to execute, and in what order. The

special token reports is a promise type –

one of many kinds of statements that

you can make about how you want your

system to function.

Bundles are made up of promises. In

this case, as you can probably guess, re-

ports is a way to generate output. The

next token, linux, followed by a double

colon, is a class. Later, I will explain

classes in more detail, but for now, just

know that code following this class will

only execute on a Linux node.

Now that cf-agent is up and running, the

next step is to configure the cf-serverd

daemon on PolicyServer so that the client

can download an updated policy.

cf-serverd functions as a secure file

server that provides external access to

the cf-agent running on a specific node.

On PolicyServer, designate a directory

as the canonical policy repository. Here,

I use /srv/cf-serverd, but you can select

whatever location fits best in your envi-

ronment. (This should not be /var/cfen-

gine. PolicyServer will probably also be a

client; that is, the server will update its

policy and evaluate it with cf-agent.)

Within your central repository, create

an inputs directory (I am mirroring the

contents of the working directory /var/

cfengine, but this is the only subdirec-

tory that I care about for now). In /srv/

cf-serverd, you need to create four files.

The first step is to create cf-serverd.cf

(Listing 1). This file will control which

machines can connect to the server and

which files they will have access to, and

it also will have some cf-serverd–specific

configuration variables.

Now, create update.cf, which will con-

tain code that the client runs to synchro-

nize its local policy to the central policy

in the repository (Listing 2).

Listing 2 introduces some Cfengine

variables. Unlike past versions, variables

are now all dynamic types (before, they

were all just strings). Other variable

types include slist (a list of strings), real

(a number with decimal precision), and

int (an integer). Variables are substituted

(as in the shell) with ${variablename}.

Listing 3 shows the file promises.cf.

The final configuration file is failsafe.cf,

which simply contains the following:

body common control {

 bundlesequence =>

 { "update" };

 inputs => { "update.cf" };

}

The special promises.cf and failsafe.cf

files are basically just dispatches specify-

ing what other code cf-agent should exe-

cute. The names for cf-serverd.cf and up-

date.cf I made up myself (you can call

them whatever you want, but I suggest

names that are similarly suggestive).

01 body server control {

02 trustkeysfrom => { "192.168.1.62", "192.168.1.61" };

03 allowconnects => { "192.168.1.62", "192.168.1.61" };

04 maxconnections => "10";

05 logallconnections => "true";

06 }

07 bundle server access_rules {

08 access:

09 "/srv/cf-serverd"

10 admit => { "192\.168\..*" };

11 }

Listing 1: cf-serverd.cf

Cfengine 3

23ISSUE 101APRIL 2009

022-028_cfengine.indd 23 11.02.2009 15:42:58 Uhr

The hard-coded entry point for cf-agent

is promises.cf. All of the code you want

to run needs to be either in this file or

referenced by this file. Strictly speaking,

failsafe.cf is not required, but if prom-

ises.cf does not parse, cf-agent will fall

back to failsafe.cf, so it is a good idea to

make sure that a very simple, known,

good failsafe.cf is available.

failsafe.cf merely attempts to update

the policy files from the server. Because

I designed failsafe.cf to get only the most

recent policy, it also functions as a boot-

strap procedure for the Cfengine client.

Thus, to configure the client initially,

you only need to copy failsafe.cf (and

any files it references) onto the client.

Before you can test the system, you need

to generate public key cryptography key-

pairs for each node. As root, run cf-key

on both the PolicyServer and the client.

This command will create identities in

/var/cfengine/ppkeys. Because of how

cf-serverd is configured in cf-serverd.cf

 trustkeysfrom =>

{ "192.168.1.62",

"192.168.1.61" };

and cf-agent is configured in update.cf,

trustkey => "true";

the behavior of the machines will be to

accept the key of a remote node on trust

the first time, but from then on only ac-

cept clients coming from that same IP

address on trust if they can prove these

clients have the same key. This stance is

rather permissive, but you can tighten

up your production systems if you deem

it worth the effort. However, then you

need to deal with key distribution

through an external channel. (One com-

mon way to improve this is to distribute

the server’s public key with the use of

your OS install system but to allow the

server to accept new clients on trust.

Only you can decide what an appropri-

ate level of security is for your site.)

To start, manually, copy cf-serverd’s con-

figuration files into place:

cd /srv/cf-serverd/inputs

cp promises.cf update.cf

cf-serverd.cf

/var/cfengine/inputs

Note that the server is also getting copies

of update.cf and all the other files; dur-

ing normal functioning, any changes you

make to cf-serverd.cf in the central repos-

itory will be picked up automatically.

With the configuration files in place,

start up cf-serverd. The following com-

mand starts cf-serverd verbosely and in

the shell foreground. If you leave these

options off, cf-serverd will silently go

into the background.

cf-serverd --verbose --no-fork

Now, bootstrap the client by copying

failsafe.cf and update.cf manually to

/var/cfengine/inputs on the client (re-

member, in a production environment,

this is something that could be taken

care of automatically), then run cf-agent

to execute the code in failsafe.cf from the

directory that contains failsafe.cf:

cf-agent --bootstrap

If you switch back to the server console,

you should see many messages about

what is going on from the server end. If

you didn’t configure your access control

correctly, diagnostics explain why the

connection or copy was denied. Once

you have verified that the network copy

was successful, you can kill the fore-

ground cf-serverd process (Ctrl+C) and

start it up as a daemon by running it

with no arguments.

The last bit of Cfengine infrastructure is

the periodic scheduler. cf-execd is a

scheduler daemon similar to cron. Per-

haps you wonder why Cfengine doesn’t

just use cron. In fact, many people run

Cfengine out of cron as well for an

added level of reliability, and they con-

figure cf-agent to restart either crond or

cf-execd if necessary. The use of cf-execd

has a number of benefits, though, in-

cluding the power to control the execu-

tion schedule within the central Cfen-

gine policy, as well as the ability to for-

mat and send email reports about any

actions. If you do decide to run cf-agent

with cron as well, I recommend having

cron execute cf-agent via the foreground

version of cf-execd; that way, you will get

the same email settings in both systems,

and cf-execd will log any output in /var/

cfengine/outputs. In this case, however, I

assume you are only running cf-agent

out of cf-execd and not cron.

First, create a new file that controls

the functionality of cf-execd (cf-execd.cf)

and add it to the inputs list (Listing 4).

Listing 4 states that cf-execd will run

01 body copy_from

 remote(server, path) {

02 servers => {

 "${server}" };

03 encrypt => "true";

04 trustkey => "true";

05 source => "${path}";

06 compare => "digest";

07 preserve => "true";

 # Preserve permissions

08 verify => "true";

09 purge => "true";

10 }

11 body depth_search recurse

 {

12 depth => "inf";

13 }

14 bundle agent update {

15 vars:

16 any::

17 "cfserverd" string =>

 "192.168.1.61";

18 "policyfiles" string =>

 "/srv/cf-serverd";

19 "server_inputs" string =>

 "${policyfiles}/inputs";

20 "client_inputs" string =>

 "${sys.workdir}/inputs";

21 files:

22 any::

23 "${client_inputs}"

24 copy_from =>

 remote("${cfserverd}",

 "${server_inputs}"),

25 depth_search =>

 recurse;

26 }

Listing 2: update.cf

Cfengine 3

24 ISSUE 101 APRIL 2009

022-028_cfengine.indd 24 11.02.2009 15:42:58 Uhr

twice per hour (that is the “schedule”

line, and the two members of the list are

called Cfengine time classes) and that it

will send mail to root@example. com

with 92.168.1.61 as a relay. If you have a

usable email address and relay, I recom-

mend using them to get a feel for how

the whole system produces feedback for

the admin.

The item most in need of explanation

is splaytime. If a splaytime is set, cf-ex-

ecd effectively waits a pseudo-random

number of minutes before attempting to

connect to the server, with the splaytime

number as a ceiling. So, in Listing 4,

cf-execd waits up to 1 minute. The point

is to avoid resource contention.

In this case, I have set it to the artifi-

cially low value of 1 so that the user will

not need to wait long to see activity from

cf-execd. In a production environment, it

would probably be better to set this to

something on the order of 15 or 20 min-

utes for the schedule given in Listing 4.

Remember to add the executor bundle

that you just created to a bundlesequence

in promises.cf. Now, go back to the client

and run cf-agent again. This should up-

date the policy from the server and

 execute it.

Afterwards, check a process listing

and you should see that cf-execd was

started. From the client’s point of view,

the process is now truly “hands-off”:

Any modifications you make to the cen-

tral policy repository will be picked up

automatically. Once the scheduled time

comes, cf-execd will wake up, run

cf-agent, and deposit any output in /var/

cfengine/outputs.

Suppose I want to use Cfengine to install

and configure Apache httpd. In fact, I

will even build httpd from source so the

solution will be portable across many

distributions and platforms. In a produc-

tion environment, I would hesitate to

have servers compile their own software.

If I truly needed to build from source, I

would most likely build a custom pack-

age and then distribute that. However,

the use of cf-agent to build from source

directly offers a nice (cross-platform)

way to display some of the available fea-

tures.

First, download the Apache source

into the Cfengine repository [3].

Rather than configuring the client to

download the source from the Internet,

it is better to cache the source code lo-

cally, so you are not dependent on exter-

nal resources. Just put the tarball in /srv/

cf-serverd/inputs on PolicyServer (in a

subdirectory for good organization),

then let the update bundle take care of

distributing it.

Create a new file to store all the httpd-

related code – say, web_server.cf. This

file needs to be added to inputs in prom-

ises.cf, and any bundles contained

within it to bundlesequence. The first

step is to create a bundle with some vari-

ables that can be re-used by other bun-

dles. A bundle of type common can be

consumed by any Cfengine component

and need not be listed in bundlese-

quence. Each bundle has its own scope,

and variables from a foreign bundle can

be accessed with the interpolation form

${bundlename.variable}. So, the code in

Listing 5 allows other bundles to make

use of, for example, ${httpd.conf},

which will evaluate to the full path.

Particular promises, such as com-

mands, files, or reports, often have pa-

rameters that determine the nature of

the promise. The appropriate key/ value

pairs follow the promise. For example,

consider the following promise:

processes:

 any::

 "cf-execd"

 restart_class =>

 "start_cfexecd";

This promise has a parameter called re-

start_class that takes a string value for

its right-hand side. (In this case, that

string will become a defined class if no

cf-execd processes are running.) Some

parameters take external bodies for their

right-hand side. The use of an external

body allows multiple key/ value pairs

and further parameterization, which al-

lows reuse. To make the concept con-

crete, consider the example that I will

soon use to compile Apache. The follow-

ing body, which takes one argument, al-

lows me to run commands in a particu-

01 body common control {

02 bundlesequence => {

 "update" };

03 inputs => { "update.cf",

 "cf-serverd.cf" };

04 }

05 # Some arbitrary harmless

actions that will generate some

output

06 bundle agent hello {

07 commands:

08 any::

09 "/bin/date";

10 reports:

11 linux::

12 "Hello, world.";

13 }

Listing 3: promises.cf
01 body executor control {

02 splaytime => "1";

03 mailto => "root@example.com";

04 smtpserver => "192.168.1.61";

05 mailmaxlines => "1000";

06 schedule => { "Min00_05", "Min30_35" };

07 executorfacility => "LOG_DAEMON";

08 }

09 bundle agent executor {

10 processes:

11 any::

12 "cf-execd"

13 restart_class => "start_cfexecd";

14 commands:

15 start_cfexecd::

16 "/usr/local/sbin/cf-execd";

17 }

Listing 4: cf-execd.cf

Cfengine 3

26 ISSUE 101 APRIL 2009

022-028_cfengine.indd 26 11.02.2009 15:42:58 Uhr

lar directory and without a shell:

 body contain cd(dir) {

 useshell => "false";

 chdir => "${dir}";

 }

Such bodies can be stored in any Cfen-

gine input file, but because they are

often general and can be reused by many

promises, it makes sense to keep them in

their own file, which I will call library.cf.

If you have not already done so, put this

cd body in library.cf and add it to the

bundlesequence in promises.cf. Remem-

ber, when changing such an external

body later, you might be affecting nu-

merous active promises, so it makes

sense to treat them with the care af-

forded to any shared resource.

In Cfengine, a class is a boolean condi-

tion meant to represent some aspect of

the system state, be that state an operat-

ing system or the time of day. Many

classes are defined automatically by

cf-agent, and you can define others from

the return values of programs and by

other means. Any promises following a

class expression (strings ending with ::)

are only enforced when the class is true.

For example, read

bundle agent a

{ reports: linux:: "asdf"; }

as “print asdf if the class linux is de-

fined.” As it happens, cf-agent automati-

cally defines the class linux on Linux

nodes. The special class any has been

used several times already; this class is

always true. It is often used, even when

not strictly necessary, to maintain cor-

rect indentation. By running cf-agent -pv

(this will not execute policy code, so it

is always safe), you can see all the auto-

matically defined classes. On one of my

test nodes, some of the automatically

 defined classes are: 64_bit, Friday,

 debian_4, and xen.

Listing 6 shows the bundle that will un-

pack, compile, and install Apache. On

most systems, the special predefined

variable sys.workdir will resolve to /var/

cfengine, which essentially says: Test to

see whether the software is installed by

checking for a particular file (more pre-

cise heuristics could be devised); if not,

build the program with the standard

untar, configure, make, and make install

procedure as usual.

Many server applications come with

configuration files that must be in place

before a complete service is deployed.

In this case, I will configure Apache to

allow server-info and server-status re-

quests. This requires editing two differ-

ent configuration files. Cfengine 3 in-

cludes four types of promises that reside

in special external edit_lines bundles –

delete_lines, replace_patterns, field_

edits, and insert_lines – and support ad-

ditional parameters.

With these promises, you can set con-

figuration variables, comment out key

lines, and maintain configuration files.

Before you can use edit_lines in a “files”

promise, you need to create some edit_

lines bundles. Think of these edit_lines

bundles as custom-made editfiles func-

tions; they are usually general enough to

re-use over many components. Two that

I will make use of are DeleteLinesCon-

taining and ReplaceAll. If you are follow-

ing the file organization I have been

using so far, it makes sense to put these

in the library.cf file with other shared

bodies (Listing 7). As you can see, they

have pretty much the same structure as

other bundles, and they can be parame-

terized as well.

In addition, I need a way to define a

class that, if I edit any files, lets me trig-

ger a service restart later:

body classes

01 bundle common httpd {

02 vars:

03 any::

04 "version" string => "httpd-2.2.10";

05 "prefix" string => "/opt/httpd/${version}";

06 "server" string => "${prefix}/bin/httpd";

07 "apachectl" string => "${prefix}/bin/apachectl";

08 "conf" string => "${prefix}/conf/httpd.conf";

09 }

Listing 5: The common Bundle

01 bundle agent install_web_server {

02 vars:

03 any::

04 "source" string =>

05 "${sys.workdir}/inputs/support_files/

 ${httpd.version}.tar.gz";

06

07 # Will get automatically cleaned up by the

 update purge

08 "compiledir" string => "${sys.workdir}/

 inputs/${httpd.version}";

09 classes:

10 "web_server_installed" expression =>

 fileexists("${httpd.server}");

11 commands:

12 !web_server_installed::

13 "/bin/tar xzf ${source} -C

 ${sys.workdir}/inputs";

14 "/bin/sh configure --prefix=

 ${httpd.prefix} --enable-modules=all"

15 contain => cd("${compiledir}");

16 "/usr/bin/make"

17 contain => cd("${compiledir}");

18 "/usr/bin/make install"

19 contain => cd("${compiledir}");

20 }

Listing 6: Setting Up Apache

Cfengine 3

27ISSUE 101APRIL 2009

022-028_cfengine.indd 27 11.02.2009 15:42:58 Uhr

DefineIfChanged(class) {

 promise_repaired =>

 { "${class}" };

 }

Once I have all these components in

place, I can tell cf-agent to use them to

edit the config files; in this case, I need

to uncomment the httpd-info line in

httpd.conf and remove the access control

from httpd-info.conf (Listing 8).

If you need a way to keep an eye out for

the web server process – to restart it if it

is not running – create another bundle,

or simply add the promises in Listing 9.

The code in Listing 9 wraps the pro-

cess detection with a class so I am sure

the web server is running on nodes that

have a web server installed.

For even greater reliability, you might

want to create a functional test – that is,

a test that queries the service. In this

case, you need to fetch some data from

port 80 and make sure it is the data you

expect.

Now that your Cfengine framework is

configured, here are a few ideas for con-

tinued improvements:

s #ENTRALIZEPERIODICALLYEXECUTEDJOBS
s)NTEGRATETHEMONITORINGANDDEPLOY-

ment systems by having cf-agent auto-

matically configure monitors

s)NTEGRATEYOURBACKUPSYSTEMWITH
your deployment system

s -AKESUREALLOFYOURNODESARECONFIG-

ured to log centrally

The more functionality you bring within

Cfengine’s realm, the easier it will be to

bring new services online and to recover

from problems such as hardware failures

or security compromises. Because you

can code all the rules on how to create a

node of type X in a machine-executable

language, all you need to do is prepare a

fresh base OS install, then install Cfen-

gine and let it rebuild your replacement

node for you. p

01 bundle agent monitor_web_server {

02 classes:

03 "web_server_installed" expression =>

 fileexists("${httpd.server}");

04 processes:

05 web_server_installed::

06 # Define a class if httpd is not running so that we can start it

07 "httpd"

08 restart_class => "start_httpd";

09 commands:

10 start_httpd::

11 "${httpd.apachectl} start";

12 }

Listing 9: Watchdog

01 bundle edit_line DeleteLinesContaining(pattern) {

02 delete_lines:

03 ".*${pattern}.*";

04 }

05 body replace_with ReplaceValue(value) {

06 replace_value => "${value}";

07 occurrences => "all";

08 }

09 bundle edit_line ReplaceAll(from,to) {

10 replace_patterns:

11 "${from}"

12 replace_with => ReplaceValue(${to});

13 }

Listing 7: library.cf

01 bundle agent configure_web_server {

02 classes:

03 "web_server_installed" expression =>

 fileexists("${httpd.server}");

04 vars:

05 "info" string => "Include conf/extra/httpd-info.conf";

06 files:

07 web_server_installed::

08 # Uncomment httpd-info.conf line

09 "/tmp/httpd.conf"

10 edit_line => ReplaceAll("^#${info}.*", "${info}"),

11 classes => DefineIfChanged("restart_httpd");

12 # Remove access control from httpd-info.conf

13 "/tmp/httpd-info.conf"

14 edit_line => DeleteLinesContaining("(Allow|Order|Deny)"),

15 classes => DefineIfChanged("restart_httpd");

16 commands:

17 restart_httpd::

18 "${httpd.apachectl} graceful";

19 }

Listing 8: httpd.conf

[1] Cfengine: http:// www. cfengine. org

[2] Cfengine source code: http:// www.

 cfengine. org/ downloads/

[3] Apache tarball: http:// httpd. apache.

 org/ download. cgi

INFO

Cfengine 3

28 ISSUE 101 APRIL 2009

022-028_cfengine.indd 28 11.02.2009 15:42:58 Uhr

