
henever I upload a new ver-

sion of our blog-like newslet-

ter [1], send an email an-

nouncement, or update the RSS feed, I

tend to check the web server access log

to watch the first information-hungry

visitors read the latest news and click on

the high-res images.

Of course, deciphering the server log

entries scrolling by is fairly tedious. It

would be much better to monitor the re-

quests in the background and start work-

ing on something else in the meantime.

One way to do this would be to trans-

form web hits into sound. Many moons

ago, I read in Netscape Time, by Jim

Clark, that the early Netscapers used to

output incoming hits via PC speaker

after creating a new release [2]. A

Netscape browser download for Win-

dows croaked like a frog, the sound of

breaking glass played for Macs, and Unix

downloads were announced with a can-

non shot. This meant that the Internet

pioneers could share the sound of suc-

cess in their cubicles after the long cod-

ing stretch that preceded the launch.

Implementing something like this in

Perl is fairly easy. In my case, however,

things are not quite as simple because

the web server is somewhere in a host-

ing provider’s server farm. Although the

hoster allows ssh-based shell access, it

can’t transmit sound.

The boom-sender script on the hosting

provider’s shared server monitors the

web server’s access.log file and sends

messages for specific URLs through an

SSH tunnel to the boom-receiver sound

server script running on my home PC.

Figure 1 shows the setup: The sound

server is a script implemented by the

CPAN POE module that listens for sound

commands on port

8080 of the local

machine. Another

POE script runs

provider-side, re-

acting to changes

in the access log

and sending mes-

sages home as a

TCP client. Be-

cause my home

machine resides

Instead of just monitoring incoming requests in your web server’s log-

file, a sound server makes them audible and lets you listen to the tune

of users surfing the site. BY MICHAEL SCHILLI

boom-receiver

/dev/audio

Port 8080

Desktop

boom-sender

Port 8080

Hosting Service

SSH Tunnel

Perl: Lyrical Logfiles

72 ISSUE 98 JANUARY 2009

072-076_perl.indd 72 13.11.2008 15:47:56 Uhr

behind a firewall, the boom-sender log

checker can’t talk to it directly. Instead,

a tunnel setup that uses the command

home$ ssh -R 8080:localhost:8080 5

host.xyz-hosting.com

on my home PC connects the two dialog

partners. The log script on the hosted

server just has to send its messages to its

local port 8080, and – hey presto – they

are whisked away through

the tunnel to port 8080 on

the home PC as if the fire-

wall never existed.

The local sound machine

receives names of sound

files in this way and pro-

ceeds to play them on

Linux with the play utility

from the Sox package trea-

sure trove.

By default, the Play pro-

gram is included with

Ubuntu and can handle

both WAV files and MP3s,

assuming you configure

Ubuntu to support this.

Figure 2 shows the inter-

action of a test client with

the sound server running.

The telnet command is

launched to connect to lo-

calhost’s port 8080 and re-

ceives a greeting from the

server and a list of the

sound files it has. When

the client sends the name

of one of these WAV files

to the server, the server

plays the file. For security

reasons, only file names

are allowed, rather than

paths.

The default location in

which boom-receiver

looks for these sound files

is the current working di-

rectory (.), specified as

$SOUND_DIR in line 9 of

Listing 1.

Because it offers a pleth-

ora of server and client

components that just need

to be put together in cre-

ative ways, POE is a good

choice of server and client

technology. The poe. perl. org website and

the POE chapter in Advanced Perl Pro-

gramming [3] both offer useful introduc-

tions to POE, which requires a non-tradi-

tional, event-based programming model

that takes some time getting used to.

The server in Listing 1 defines callbacks

for the states ClientConnected (client has

opened a connection), ClientInput (cli-

ent has sent a line of text), and sound_

ended, the state that handles the clean

up work (described below) after playing

a sound.

The sound server handles multiple cli-

ent connections quasi-simultaneously.

The POE component logic takes care of

the low-level implementation details and

ensures smooth request and error han-

dling behind the scenes. Just like any

other POE script, the program code first

defines the behavior for any possible

events and then calls

01 #!/usr/local/bin/perl -w

02 use strict;

03 use POE;

04 use POE::Component::Server::TCP;

05 use POE::Wheel::Run;

06 use File::Basename;

07 use Log::Log4perl qw(:easy);

08

 09 my $SOUND_DIR = ".";

10 my @SOUND_FILES = map { basename $_ }

11 <$SOUND_DIR/*.wav>;

12

 13 Log::Log4perl->easy_init($DEBUG);

14

 15 POE::Component::Server::TCP->new(

16 Port => 8080,

17

 18 ClientConnected => sub {

19 $_[HEAP]{client}->put("Soundfiles: [".

20 join(", ", @SOUND_FILES) . "]");

21

 22 $_[HEAP]{client}->put(

23 "Ready when you are.");

24 },

25

 26 ClientInput => sub {

27 my $client_input = $_[ARG0];

28

 29 if($client_input !~ /^[\w.-]+$/) {

30 $_[HEAP]{client}->put(

31 "Illegal input.");

32 return;

33 }

34

 35 if($client_input eq "q") {

36 POE::Kernel->yield("shutdown");

37 return;

38 }

39

 40 my $msg = sound_play(

41 $_[HEAP],

42 basename($client_input));

43

 44 $_[HEAP]{client}->put($msg);

45 },

46

 47 InlineStates => {

48 sound_ended => sub {

49 my ($heap, $wid) = @_[HEAP, ARG0];

50 DEBUG "Deleting wheel $wid";

51 delete $heap->{players}->{$wid};

52 },

53 },

54);

55

 56 POE::Kernel->run();

57 exit;

58

 59 ###

60 sub sound_play {

61 ###

62 my($heap, $file) = @_;

63

 64 if(! -f "$SOUND_DIR/$file") {

65 return "$file doesn't exist";

66 }

67

 68 POE::Kernel->sig(CHLD => "reaped");

69

 70 my $wheel =

71 POE::Wheel::Run->new(

72 Program => "/usr/bin/play",

73 ProgramArgs => ["$SOUND_DIR/$file"],

74 StderrEvent => 'ignore',

75 CloseEvent => 'sound_ended',

76);

77

 78 DEBUG "Creating wheel ", $wheel->ID;

79 $heap->{players}->{ $wheel->ID } = $wheel;

80

 81 return "Played $file";

82 }

Listing 1: boom-receiver

Perl: Lyrical Logfiles

73ISSUE 98JANUARY 2009

072-076_perl.indd 73 13.11.2008 15:47:59 Uhr

POE::Kernel->run() to launch the POE

kernel. The kernel runs until the pro-

gram ends, until a fatal error occurs, or

until the user terminates the script.

The sound_play() function in line 60 of

Listing 1 plays a sound file passed to it

by name. It creates POE::Wheel, a cog-

wheel in the POE system’s works that al-

lows the POE kernel to talk to the world

outside.

To allow the system to process multi-

ple tasks quasi-simultaneously, Perl code

in POE should only run uninterrupted as

long as it proceeds at full speed. Any in-

teractions with files, sockets, or other

processes obviously cause delays be-

cause disk or network access is far

slower than processing CPU instructions

or accessing RAM, and it would be ex-

tremely inefficient to let the CPU sit idle

while waiting for these tasks to com-

plete. Instead, they are handed off to

wheels, which accomplish them one

slice at a time and report results back

asynchronously to the POE kernel.

Applying the play command to start a

new Unix process, passing a short sound

file to it, and waiting for it to play takes

more than a second. If the script was

blocked for this time, it would delay the

client response and not be available for

new requests.

Instead, a wheel is spun off with the

process task, the callback returns imme-

diately, and the POE kernel reassumes

control, leaving everything else to run in

the background.

The wheel – POE::Wheel::Run

– expects as parameters an exter-

nal program to launch, its argu-

ments, and a StderrEvent call-

back, triggered if the process

writes anything to its STDERR

channel. Of course, this is not

relevant for the Play program,

which does not normally output

error messages and simply termi-

nates after playing a sound file.

Boom-receiver simply defines a

non-existing state for this event,

which POE later ignores.

When the wheel notices that

the play process has terminated,

it triggers CloseEvent in line 75,

assigned to a subroutine in line

48. Then it removes the remain-

ing reference to the wheel from

the system, which unleashes the

POE kernel’s garbage collector to clean

up its remains.

Ideally, the wheel would just launch a

process such as xmms, which would run

permanently, and then occasionally pass

sound files to it. However, the POE com-

ponent for this on CPAN is badly out of

date and won’t compile with the current

version of XMMS. Pity!

Admittedly, the implementation shown

here wastes resources on the local ma-

chine, but it can indeed convert quasi-

parallel requests into sounds. To allow

this to happen, the script keeps a refer-

ence to the wheel object that generates

the sound because POE cleans the object

up immediately if nobody takes care of

it. The wheel’s task of playing the sound

does not end at sound_play(), because

the POE kernel processes it slice by slice

after the function terminates. To avoid

an untimely demise, while at the same

time avoiding keeping wheels for longer

than necessary, line 79 saves a reference

to the wheel object in the POE session

heap with the key players and the

wheel’s ID.

Because the wheel defines a

CloseEvent with a callback sound_ended,

POE calls the function defined in line 48

when the sound process terminates; in

turn, the function deletes the wheel ref-

erence to let POE move in for the kill.

Another issue is that POE::Wheel::Run

does not automatically clean up termi-

nated child processes, instead leaving

them lying around as zombies on the

Unix system. Therefore, line 68 defines

a SIGCHLD handler that tells the parent

process to issue a wait() for the termi-

nated child process and prevent it from

turning into a zombie.

As soon as a client connects to port

8080 on the

POE::Component::Server::TCP server

component, its state machine changes

state to ClientConnected. In the callback,

$_[HEAP]{client} contains a client ob-

ject whose put() method is used by the

server to send messages to the client.

The server uses ClientConnected to in-

form the connecting client of the avail-

able sound files before announcing

Ready when you are.

Whenever the client sends a line to

the server, the server jumps to the sub-

routine mapped to the ClientInput state.

The received message is available in

$_[ARG0], one of the @_ argument array

fields typical of POE.

To prevent the client from attacking

the server with nasty shell commands,

instead of sending a sound file as ex-

pected, line 29 checks the file name to

see whether it contains anything apart

from the normal characters and immedi-

ately issues an error message and rejects

the request in this case.

The client sends the q character to in-

dicate that it wants to quit the session;

the server then switches to the shutdown

state, terminating the current client con-

nection but leaving the server running.

If the client really does send the name of

an existing sound file, the sound_play

function plays the file and returns a sta-

tus string, which the server sends via

put() to the client to confirm successful

execution.

At the other end of the tunnel, the POE

script (boom-sender) in Listing 2 moni-

tors the web server’s access logfile. It

runs on the hosted machine and uses the

POE framework’s TCP client component

to keep in touch with the server.

Among other things, the Client::TCP

POE component defines the ServerInput

and ConnectError events; the script

jumps to the callbacks for these events if

the server sends text back or a connec-

tion fails.

Boom-sender uses InlineStates to de-

fine the send state, which uses put() to

Perl: Lyrical Logfiles

74 ISSUE 98 JANUARY 2009

072-076_perl.indd 74 13.11.2008 15:48:08 Uhr

send a message to the server that was

passed in.

Thanks to the FollowTail wheel from

the POE toolbox, the logfile monitoring

session defined in line 29 notices when

the web server appends a line to the log-

file defined in line 35. Again, it is impor-

tant to have a reference to the wheel to

prevent POE cleaning it up after the

_start callback terminates.

The reference is kept in the POE ses-

sion heap under the tail key while the

session is active – that is, until boom-

sender terminates.

Production systems will tend to rotate

their logfiles daily; FollowTail is prepared

for this and jumps to the got_log_rollover

callback mapped to ResetEvent in this

case. All this does is write a debug mes-

sage to let the user know what is going

on. Whenever the wheel finds a newly

appended line in the log, it changes state

to got_log_line and executes the match-

ing callback. It uses the CPAN

ApacheLog::Parser module to analyze

the new lines, which have the following

format:

67.195.37.108 - - [01/Sep/2008:17:25:205

-0700] "GET /1/p3.html HTTP/ 5฀

1.0" 200 8678 5

"-" "Mozilla/5.0 (X11; U; Linux i686 5

(x86_64); en-US; rv:1.8.1.4) 5

Gecko/20080721 BonEcho/2.0.0.4"

The parse_line_to_hash() function ex-

ported by this module returns a hash

containing the file requested by the http

request under the file key.

In line 12, the TCP client component

defines an alias (boom) for its session.

The FollowTail wheel, running in an-

other session defined in line 29, can use

the following lines to tell the TCP server

which sound file it needs to play:

POE::Kernel->post("boom", "send",5

 file2sound($file));

Because two different sessions are com-

municating here, I can’t use yield() to

send the event; instead, I must use

post() with the alias of the receiving ses-

sion. Then the name of the WAV file is

sent by the POE kernel to the send call-

back in the boom session as argument

ARG0. The callback then uses put() to

send the name to the TCP client in line

21, which in turn passes it on to the

sound server – not directly, but to port

8080 on the local machine, and thus

through the tunnel to port 8080 on the

sound server.

If every entry in the access log were to

trigger a sound, a web page with 20 im-

ages, which the browser retrieves in

short succession, would trigger an an-

noying cluster of superimposed noises.

For this reason, boom-sender filters the

access log output and only transmits to

the sound server in case of index pages,

high-res images, and discussion forum

activity.

The file2sound() function defined in

line 59 expects the file path requested by

the browser (for example, /index.html)

and returns the name of the sound file to

play.

To allow this to happen, it makes a

few assumptions – for example, that a

Perl: Lyrical Logfiles

072-076_perl.indd 75 13.11.2008 15:48:09 Uhr

path that ends with a / should output an

index.html file – that you might need to

modify when installing.

The boom-sender script is installed on

the hosted machine; the Perl modules re-

quired for this are available from CPAN.

AccessLog::Parser has dependencies for

Getopt::Helpful, Date::Piece, File::Fu, and

Class::Accessor::Classy.

If your provider refuses to install

these, you can add a module directory in

the user-writable area on the hosted ma-

chine and add the directive

use lib "/home/name/perl-modules";

to the Perl script to point it to the new

location.

Alternatively, you could set up your

own Perl installation in the user-writable

area of the hosted machine.

Also, you could consider the PAR tool-

kit, which allows you to pack module ar-

chives and even executables without in-

stallation worries in a similar style to

Java JAR files.

To reflect your local setup, you will

need to modify the URL sound file map-

pings set up by the file2sound() function

in boom-sender.

Make sure the sound files you refer-

ence are available on the sound server.

On the sound server, the sound files are

installed in $SOUND_DIR. The /usr/

share/sounds/purple directory has a use-

ful selection of short

sounds.

In this directory the Pid-

gin IM client (formerly

known as Gaim) stores the

sound data that the pro-

gram outputs when bud-

dies log on or off or that it

uses to notify the user of

incoming or outgoing in-

stant messages.

After starting the sound

server boom-receiver and

letting it run in the fore-

ground, performing a

short test with the telnet

client in another terminal,

and setting up the SSH

tunnel referred to earlier,

you can launch your log-

file monitoring system

script on the hosted ma-

chine, sit back, and enjoy

the concert.

In addition to the re-

quested URL paths, the

sound server could also

play sounds whenever a

request fails. The web

server stores the return

code for each request in

access.log, and the log

parser provides access to

it with the $fields{code}

hash entry.

To make sure you get

the system administrator’s

attention, you might like

to use flatulent noises or

explosions for this. p

[1] USA newsletter (in German):

http:// usarundbrief. com

[2] Clark, Jim. Netscape Time:

The Making of the Billion-Dollar

Startup That Took on Microsoft. St.

Martin’s Griffin, 2000.

[3] Cozens, Simon. Advanced Perl

 Programming, 2nd edition.

O’Reilly. 2005.

[4] Listings for this article:

http:// www. linux-magazine. com/

 resources/ article_code

INFO

01 #!/usr/local/bin/perl -w

02 use strict;

03 use POE;

04 use POE::Wheel::FollowTail;

05 use POE::Component::Client::TCP;

06 use ApacheLog::Parser

07 qw(parse_line_to_hash);

08 use Log::Log4perl qw(:easy);

09 Log::Log4perl->easy_init($DEBUG);

10

 11 POE::Component::Client::TCP->new(

12 Alias => 'boom',

13 RemoteAddress => 'localhost',

14 RemotePort => 8080,

15 ServerInput => sub {

16 DEBUG "Server says: $_[ARG0]";

17 },

18 InlineStates => {

19 send => sub {

20 DEBUG "Sending [$_[ARG0]] to server";

21 $_[HEAP]->{server}->put($_[ARG0]);

22 },

23 },

24 ConnectError => sub {

25 LOGDIE "Cannot connect to server";

26 }

27);

28

 29 POE::Session->create(

30 inline_states => {

31 _start => sub {

32 $_[HEAP]->{tail} =

33 POE::Wheel::FollowTail->new(

34 Filename =>

35 "/var/log/apache2/access.log",

36 InputEvent => "got_log_line",

37 ResetEvent => "got_log_rollover",

38);

39 },

40 got_log_line => sub {

41 my %fields =

42 parse_line_to_hash $_[ARG0];

43 my $file = $fields{ file };

44 if(my $sound = file2sound($file)) {

45 POE::Kernel->post("boom", "send",

46 $sound);

47 }

48 },

49 got_log_rollover => sub {

50 DEBUG "Log rolled over.";

51 },

52 }

53);

54

 55 POE::Kernel->run();

56 exit;

57

 58 ###

59 sub file2sound {

60 ###

61 $_ = $_[0];

62

 63 DEBUG "Got $_";

64

 65 s#/$#/index.html#;

66

 67 m#/index.html$# and

68 return "article-page.wav";

69

 70 m#/posting.php# and

71 return "forum-post.wav";

72

 73 m#/viewforum.php# and

74 return "forum-page.wav";

75

 76 m#/images/.*html# and

77 return "image.wav";

78

 79 return "";

80 }

Listing 2: boom-sender

Perl: Lyrical Logfiles

76 ISSUE 98 JANUARY 2009

072-076_perl.indd 76 13.11.2008 15:48:09 Uhr

