SYSADMIN Sandboxing

SANDBOXING

Unknown and Untrusted

If you're like me, you love to test new
software, and therein lies one of the
huge advantages of the open source
world. Almost everything is just a short
wget, ./configure; make; make install
away, and there’s no need to pay, regis-
ter, provide personal information, wait a
week for the CD to arrive, and so forth.
But how can you be certain that the soft-
ware won't interfere with your system,
overwrite something, or otherwise be-
have badly?

Or what if you want to run a web ser-

vice that you know has a history of prob-

lems allowing for remote code execution
on the web server?

Sandboxing

A common programming and system ad-
ministration technique is to use sand-
boxes, which essentially are restricted
areas for the software (or in some cases,
an entire operating system or group of
systems) to run where it can't interfere
with production systems. By setting up a

walled-off testing area, you know that if
anything does go wrong, it is less likely
to cause severe problems, such as affect-
ing your real file server or web server.
Additionally, it is easier to observe and
verify the behavior of the software be-
cause there is less going on within the
sandbox.

This leads to the two main require-
ments of a sandbox: You need to be able
to isolate the software, and you need to
be able to monitor what the software is
doing and control it.

Fortunately, over the past few years, a
number of advancements in computing
have made the first requirement much
easier to meet. Faster CPUs, larger hard
disks, and cheap memory, combined
with widespread virtualization software,
now mean that almost anyone with a
recent computer - at least 1-2GHz and
S512MB of RAM - can easily run at least
one entire operating system on top of
their existing operating system.

Unfortunately, many of these products
do not address the second requirement
very well, with many either requiring the

o virtualized operating sys-
' tem (also known as the
guest) to be modified sig-
nificantly or to use virtual
files to hold the hard-
drive contents for
the guest.

Sandboxing

an 0S with

VMware

Server

The good news
is that VM-
ware Server

g is free to down-
load and use. The

bad news is that it

is a closed source

product. Please

" note that [haven't

¢ covered all the possi-

BY KURT SEIFRIED

ble options, such as Bochs [1], Xen [2],
User-Mode Linux [3], VirtualBox [4],
KVM [5], OpenVZ [6], QEMU [7], etc.)
because there are simply too many to fit
within the pages of this article.

Additionally, 1 like VMware Server [8]
because it only requires a few kernel
modules (vmnet, vmmon) and can run
almost any operating system as a guest
without any modifications to the guest
operating system.

Installation is relatively straightfor-
ward: You simply download and unpack
the file and run the vrmware-config.pl
script. After you answer a few quick
questions, you are ready to run. The
major downside to VMware Server is
that it uses disk-based image files for the
guest operating system, so to examine
the “hard drive” for the guest operating
system, you will either need to stop or
suspend it and then mount the disk
image (Listing 1).

The advantage is that you can literally
stop an operating system in its tracks,
examine a frozen snapshot of it at your
leisure, then resume it when you're
done.

Sandboxing an Application
with chroot

Sometimes, however, sandboxing an en-
tire operating system is overkill. What if
you just want to compile some software
and install it without affecting your cur-
rent system or give yourself the option
of easily removing the software? Oddly
enough, this is the exact same challenge
that Bill Joy ran into while working on
BSD back in the 1980s. His solution was
to create the chroot system call and util-
ity program.

With chroot, you must remember one
critically important thing: chroot was
not meant to be a security mechanism.
Instead, it was designed to make soft-
ware testing and installation easier and
safer. A process or a user with roat privi-
leges can easily break out of a chroot en-
vironment and cause damage to the un-
derlying operating system. However, this

can largely be mitigated by running all
software within the chroot as a non-root
user and removing any potentially un-
safe setuid binaries that run as root or
with otherwise elevated privileges.

Building a chroot

Environment

On RPM- and Debian DPKG-based sys-

tems, building a chroot environment is

relatively easy. Some people will accuse
me of being RPM-centric, and they’d be

correct - I started with Slackware 1.0,

but I switched after seeing Red Hat 3.0.3

and have been using Red Hat and

CentOS ever since.

Also, Debian has documented the pro-
cess of building a chroot environment
properly, so I do not need to repeat it
here [9].

To build a complete chroot environ-
ment, you need several basic items:

e a file system with some basics, such
as /dev/ and /proc/ (so that things like
ps will work);

® any programs and libraries needed to
run the software you want to test; and,

e optionally, an easy way to install or
update software within the chroot,
which is especially important if you
want to use the chroot as a production

Listing 1: Mount the Disk

Image

01 # vmware-mount.pl -p Centos.
vmdk

02

03 Nr Start Size Type
Id System

@4 == ==ccscsces ccossssess coss

05 1 63 208782 BI0S
83 Linux

06 2 208845 530145 BIOS
82 Linux swap

07 3 738990 20225835 BIOS
83 Linux

08

09 # vmware-mount.pl Centos.vmdk
3 /mnt/vmware/

10

11 4 df

12 Filesystem 1K-bTocks
Used Available Use% Mounted on

13 /dev/nb0 9796164
2548372 6742148 28% /mnt/
vmware

Sandboxing

environment to compartmentalize
software).

Step 1: Basic File System

Here, I use /chroot as the chroot base
directory. As root, execute:

mkdir /chroot

#f mkdir /chroot/proc

ff mkdir /chroot/dev

#f mount -t proc 2

proc /chroot/proc

/sbin/MAKEDEV generic -D 2
/chroot/dev -d /chroot/dev

Step 2: Prep chroot for yum Usage
Installing the release package (e.g., cent-
os-release, redhat-release) into the chroot
will let yum work:

rpm -Uvh --nodeps 2
--root=/chroot/ 2
centos-release-5-1.0.el5.2
centos.1.x86_64.rpm

Step 3: Install into the chroot

The RPM also installs the software into
the chroot, but yum will handle depen-
dencies and make things much simpler:

yum --installroot=/chroot/2
install bash yum vim-minimal

At a minimum, I recommend a shell
(bash), yum to install software, and the
vim editor to modify files in the chroot.

Step 4: Network Configuration
Files

If you want to access the network from
within the chroot, you need a resolv.conf
file (lets applications know where your
DNS servers are to be found) and:

#f mkdir /chroot/etc/

##f mkdir /chroot/etc/sysconfig
cp /etc/resolv.conf 2
/chroot/etc/

ff cp /etc/sysconfig/network 2
/chroot/etc/sysconfig/

"Logging” In to a chroot

At this point, you’ll be able to access the
chroot with a command such as $ chroot
/chroot/ bash, which will chroot you into
the /chroot/ directory and execute bash
from within it.

As I mentioned, chroot is not an inher-
ently secure method for isolating appli-

JUNE 2008

SYSADMIN

cations. By not logging into the chroot
as a privileged user such as root, and by
removing any setuid and setgid binaries
that run with elevated privileges, you
can ensure that nothing runs as root
within the chroot environment:

find / -type f -perm +6000

Conclusion

Sandboxing is now easier than ever and
its benefits have never been more impor-
tant. Isolating badly written web appli-
cations from the underlying operating
system or letting an administrator install
a program without affecting the system
can save both time and money. Like any-
thing, prevention and foresight can sig-
nificantly reduce the amount of work
needed to maintain and fix a system long
term, and sandboxing offers a practical
tool to accomplish this. W

[1] Bochs: http://bochs.sourceforge.net/

[5] KVM:
http://kvm.qumranet.com/kvmwiki

[6] OpenVZ: http://openvz.org/

[71 QEMU:
http://fabrice.bellard.free.fr/qgemu/

[3] User-Mode Linux: http://
user-mode-linux.sourceforge.net/

[8] VMware Server: http://www.
vmware.com/products/server/

[4] VirtualBox: http://www.virtualbox.
org/

[2] XEN: http://www.xensource.com/

[9] Debian chroot instructions:
http://www.debian.org/doc/manuals/
reference/ch-tips.en.html#s-chroot

[10] FreeVPS: http://www.freevps.com/

[11] Linux-VServer:
http://linux-vserver.org/

[12] AppArmor: http://www.novell.com/
linux/security/apparmor/

[13] SELinux:
http://www.nsa.gov/selinux/

Kurt Seifried is an

Information Secu-

rity Consultant spe-

cializing in Linux

and networks since

1996. He is married

and has four cats

but no fish (because

the cats are more hungry than afraid
of water). He often wonders how it
is that technology works on a large
scale but often fails on a small scale.

e
o
==
=
=)
<
L
==
=

ISSUE91 65

