
Tools and techniques for PHP with Linux

PHP SCRIPTING

PHP IDEs ... 31

PHP Script Archives 36

PHP with Eclipse 40

eZ Components 44

COVER STORY

P
HP is at home on tiny guestbook

sites that handle six visitors a

week, and on high-end, high-per-

formance websites with millions of visi-

tors a day. This open-source program-

ming language has a pleasantly smooth

on-ramp for new programmers and small

projects, but PHP also has the power,

flexibility, and developer community

to handle just about anything you can

throw at it. This month’s cover story

looks at the world of PHP.

In later articles, we compare some

popular PHP Integrated Development

Environments (IDEs). Also, we show

you how to find PHP scripts in online

 archives, and we take a close look at

PHP development with the open source

Eclipse IDE. The final article examines

the eZ Components library for PHP.

First, we begin with a hands-on intro-

duction to PHP for the web-savvy user.

If you’re already experienced with PHP,

you may want to skip to the next story,

but if you’re looking for more back-

ground on PHP scripting, read on for a

practical introduction to the craft. We

hope you enjoy this month’s PHP Script-

ing cover story.

Hello, PHP
The traditional “Hello, World” program

in PHP is kind of a let down:

Hello, World

Passing a file simply containing Hello,

World to PHP returns Hello, World.

Mission accomplished! But what a

boring mission.

When given a file to process, PHP only

pays attention to the bits between the

file “start” and “end” tags. The start tag

is <?php and the end tag is ?>. So a

more interesting and PHP-centric Hello,

World looks something like the script

shown in Listing 1. Save Listing 1 to a

file called hello.php on a PHP-enabled

web server, and when you visit that

page, you’ll see a form with:

What's your name?

[Go!]

Type in your name, hit the Go! button,

and then you’ll see:

Hello, Slartibartfast

(assuming you’ve typed Slartibartfast

into the form field).

This simple example illustrates many

of the basic principles of PHP.

PHP Principles
The zeroth principle is that there’s an

 exception to just about every one of the

other principles. PHP has approximately

127 million different configuration flags,

options, directives, and other ways to

change its behavior behind the scenes.

Depending on its configuration set-

tings, PHP intermixes error messages

with output, logs errors to a file, recog-

nizes alternate start and end tags, disal-

lows access to certain functions, com-

plains if you set cookies after generating

output, and makes certain extensions

PHP is becoming an essential tool for all but the simplest websites. This month we examine PHP in the Linux

environment. BY DAVID SKLAR

COVER STORYPHP Scripting Intro

21ISSUE 87FEBRUARY 2008

021-025_coverintro.indd 21 14.12.2007 14:46:03 Uhr

available or unavailable. The list of con-

figuration settings in the PHP manual

(http:// php. net/ ini) is a helpful resource

if your server is behaving very differ-

ently from how the examples in the arti-

cle say it should.

Web Server Embrace
The first principle is that PHP exists in

the warm, comfortable embrace of a web

server. The typical execution model is

that a request comes to a web server for

a URL that the web server has been told

PHP should handle (through pattern

matching, filename extension, or some-

thing else), the web server translates

that URL into a particular file, and then

the web server invokes the PHP inter-

preter, telling it to run the code in that

file. PHP runs that code and generates

output, which is sent by the web server

back to the client as the response to the

web request.

“Standard Out” in a PHP program is

an http response. The console is a web

browser.

The next principle is that PHP only

cares about what’s between <?php and

?> – everything outside those tags is

treated as literal output.

The following PHP programs generate

the same output:

Hello, World

Hello, <?php print 'World' ?>

<?php print 'Hello, World' ?>

<?php print 'Hello, ' ?>World

The PHP open and close tags are com-

pletely orthogonal to other code group-

ings – you can start and end PHP mode

inside conditional blocks, function defi-

nitions, and just about anywhere else in

a PHP program.

Third, PHP sets up arrays containing

externally submitted data for you to use.

Form data submitted with a POST re-

quest is in an array called $_POST (vari-

able names in PHP begin with the vener-

able $). The submitted value of a form

Before diving into more code, I will sum-

marize some tips and bits of background

information that will make your PHP

 experience more pleasant. First of all,

take advantage of the online manual at

http:// php. net.

For any built-in function or class, visit

http:// php. net/ <the function or class>

to get details. For example, if you’re

 curious what the str_split() function

does, hit http:// php. net/ str_split.

Want to know what the arguments are

for imagecolorallocate()? http:// php. net/

 imagecolorallocate tells you. This is a

valuable resource in every PHP develop-

er’s toolbox.

Variable names begin with $. The rest

of the variable name is a letter, numeral,

or underscore (except the first character

after the $ can’t be a numeral.)

Strings delimited with ' and " behave as

you probably expect them to. Everything

is literal in '-delimited strings, except you

must backslash-escape backslash and '.

Double-quoted strings support more

backslash escape characters and variable

interpolation. Concatenate two strings

together with a period.

Strings are just byte sequences. If you’re

working with non-ASCII data, check out

http:// php. net/ mbstring to learn about

the multibyte extension and the tools it

gives you for working with multibyte en-

codings and character sequences. PHP 6

(to be released sometime before Perl 6)

has drastically overhauled international-

ization support and a comprehensive re-

working of multibyte string handling.

If $alice is an array, then $alice[$bob]

gives you the element of $alice whose

key or index is the value in $bob. There’s

not much difference in PHP between ar-

rays whose keys are all whole numbers

and arrays whose keys may be strings.

Other languages might call them arrays,

maps, hashes, dictionaries, sets, lists –

in PHP they’re all just arrays.

PHP does give you a few shortcuts if you

want numeric array keys – auto-assigns

keys starting with 0: $dessert = array

('icecream', 'cake'); means that $dessert

[0] is ice cream and $dessert[1] is cake.

Plus, you can use [] to toss something

on to the end of an array. $dessert[] =

'candy' means that now $dessert[2] is

'candy'.

If you’re having trouble with your PHP

configuration or things aren’t behaving

as you expect, make liberal use of the

phpinfo() function. Just drop a page on

your website that contains only:

<?php phpinfo(); ?>

Then visit the page in your browser.

You’ll get a dump showing what exten-

sions are loaded and how PHP is config-

ured. Don’t leave phpinfo() pages wide

open for anyone on the Internet to visit,

however. Some of the configuration

 information could make it easier for an

attacker to break into your server.

Another handy low-tech debugging tool

is the built-in function var_dump(). Pass

the function any variable – a scalar, an

array, whatever – and it will output the

variable's type and value. This is handy

for a quick check on a variable if it is not

behaving as expected.

Last, remember that, because you’re typ-

ically viewing PHP output in a browser,

the formatting of the text you’re viewing

obeys the rules of HTML, not a terminal.

If your PHP script prints out a bunch of

strings separated by newline characters,

you’re going to see them all crammed

together on one line in your browser,

since a plain newline character (accord-

ing to the rules of HTML) does not cause

a line break.

To get proper line breaks, either use your

browser’s “View Source” mode or have

your code output HTML such as
,

which tells the browser to insert a new-

line in the display.

Some Useful Information

01 <?php if (! isset($_POST['who_

are_you'])) { ?>

02

03 <form method="post"

action="hello.php">

04 <p>What's your name?</p>

05 <input type="text" name="who_

are_you" />

06

07 <input type="submit"

value="Go!" />

08 </form>

09

10 <?php } else {

11

12 print "Hello, " .

htmlspecialchars($_POST['who_

are_you']);

13

14 ?>

Listing 1: Hello, PHP

PHP Scripting IntroCOVER STORY

22 ISSUE 87 FEBRUARY 2008

021-025_coverintro.indd 22 14.12.2007 14:46:10 Uhr

element named who_are_you is put in

an array element named who_are_you.

Some other arrays containing similar

kinds of data are:

$_GET: query string variables

$_COOKIE: U

submitted cookie values

$_SERVER: assorted server-y U

data such as the current URL, U

current host name, U

values from HTTP request headers

$_ENV: environment variables

The isset() function in Listing 1 tells you

whether there’s a value for that element

of the array. If there is, assume the form

has been submitted and go on to print

out some data. If not, then display the

form. In a real program, you’d probably

check the length of the string or its con-

tents here as well.

Fourth, it is incredibly easy to write in-

secure PHP programs. The task that PHP

is usually put to involves web pages that

accept submitted data and then manipu-

late or display that submitted data.

 Another way of describing that task is

“allow anybody in the world to throw

 arbitrary data into your application and

allow anybody in the world to view

whatever data you’ve got.”

See the box titled “Security Matters”

for more about security in PHP.

Talking to a Database
The most common use for PHP is stuff-

ing information from a web form into a

relational database and then generating

web pages with information from the da-

tabase. With recent versions of PHP, the

easiest way to do this is with the PDO

extension, which provides a standard-

ized access interface no matter which re-

lational database you’re talking to. The

only thing that changes is how you spec-

ify what database you connect to and,

potentially, any vendor-specific SQL you

want to use. Listing 2 is an extension of

the Hello, World example above so that

the entered names get saved in a data-

base, and then a list of them is displayed

after a name is entered.

Save this program as hello-db.php to

use it on your computer, or change the

value of the action element of the form

to whatever you save the program as.

Database Interaction
Aside from the additional check on the

length of the submitted name (using

strlen()), all the new code in this exam-

01 <?php

02 // Connect to the database

03 $dbh = new PDO('sqlite:/tmp/

guestbook.db');

04 // Report errors if there are

database problems

05 $dbh->setAttribute(PDO::ATTR_

ERRMODE, PDO::ERRMODE_

WARNING);

06

07 // Make sure a name is

submitted and it's not empty

08 if (! (isset($_POST['who_are_

you']) && strlen($_POST['who_

are_you'])))

09 { ?>

10 <form method="post"

action="hello-db.php">

11 <p>What's your name?</p>

12 <input type="text" name="who_

are_you" />

13

14 <input type="submit"

value="Go!" />

15 </form>

16

17 <?php } else {

18 // Print out the

just-entered name

19 print "Hello, " .

htmlspecialchars($_POST['who_

are_you']) . '
';

20

21 // Get other entries from

the database

22 print "Other entries:";

23 print '';

24 foreach ($dbh->query('SELECT

* FROM article_name_test') as

$row) {

25 printf("%s on %s</

li>", $row['name'],

26 date('F j, Y',

strtotime($row['inserted_

on'])));

27 }

28 print '';

29

30 // Insert the just-entered

name into the database

31 $stmt =

$dbh->prepare('INSERT INTO

article_name_test

(name,inserted_on) VALUES (?,

?)');

32 $stmt->execute(array($_

POST['who_are_you'],

date('c')));

33 }

Listing 2: Hello, Database

In practice, programs implement vary-

ing degrees of authentication, access

control, data filtering, and data escap-

ing. A huge portion of PHP security

problems are the result of an attack

called cross-site scripting.

This attack boils down to allowing Evil

Alice to upload some content to an inno-

cent (but poorly coded) website such

that, when User Bob visits the site, the

content is sent to User Bob and then it

does something bad to Bob.

There are intricacies to protecting

against this sort of attack (and some

 further reading is listed at the end of

the article) but the htmlspecialchars()

function, used in Listing 1, gets you

most of the way. Apply this function to

any untrusted external data before you

include it in web-page output. The func-

tion transforms characters that have

special meaning in HTML to their HTML-

entity equivalents; the characters it

transforms are &, ", <, and >. This means

that

<?php

print htmlentitiesU

("<script>alert('hello!');U

</script>");

?>

causes the following to be part of the

web page output:

<script>alert('hello!');U

</script>

Without the entity encoding, the

browser would see <script>alert('hello!')

;</script> and treat the business inside

the <script/> tag as JavaScript, popping

up a little alert dialog box.

More malicious exploits, however, are

the norm. With the entity encoding, the

browser displays a < when it encounters

< and a > when it encounters >.

This prevents malicious script code from

running on unsuspecting User Bob’s

computer.

Security Matters

COVER STORYPHP Scripting Intro

23ISSUE 87FEBRUARY 2008

021-025_coverintro.indd 23 14.12.2007 14:46:10 Uhr

ple has to do with database interaction.

The PDO object, created at the beginning

of the example, provides access to the

database. Exactly which database it’s

providing access to depends on the DSN

(Data Source Name) provided to the

PDO constructor.

This example uses SQLite, a snappy

filesystem-based database that comes

with PHP. SQLite is handy for many

tasks because it doesn’t require installa-

tion and tuning of separate software or

monitoring of other processes.

The DSN in the example provides the

pathname (/tmp/guestbook.db) that

you'll use for the database.

After connecting to the database and

creating a new PDO object, the code

calls $dbh->setAttribute() to adjust

PDO’s error-reporting mode.

The PDO::ERRMODE_WARNING mode

is useful for exploration and debugging

because it causes any database errors to

be reported as part of PHP’s regular out-

put stream.

The rest of the database interaction in

the example happens after a valid name

is submitted. First, the $dbh->query()

method is used to retrieve some rows

from the table. The method acts as an it-

erator in PHP, so you can slap it directly

inside a foreach() loop, and the loop

variable ($row) is populated with each

row from the result set.

By default, rows are represented as ar-

rays, so you can use the column names

for array keys to access the data –

$row['name'] contains the value of the

name column of the row and

$row['inserted_on'] contains the value

of the inserted_on column of the row.

PHP’s printf() function acts just like

its C-library counterpart, and so it is a

tidy way to mix dynamic data into a

string. The strtotime() function turns

the ISO datestamp that comes out of the

database into a Unix Epoch timestamp,

and the date() function uses the format

string F j, Y to turn that timestamp into

a string such as December 3, 2008.

The last bit of code in the example in-

serts the newly submitted name into the

database table.

Prepared Statement
The $dbh->prepare() function creates

a prepared statement – a template of an

SQL statement that can be executed

many times. In each execution, the ?s

(called placeholders) in the prepared

statement are replaced by actual values.

To execute a prepared statement, call

the execute() method on the statement

object and pass it an array containing

values to bind to each placeholder.

Two very good reasons exist for using

prepared statements instead of building

literal SQL queries as strings containing

dynamic data: performance and security.

Speed
Depending on the database engine

you’re using, executing a prepared state-

ment a few times is faster than building

a new SQL query with the dynamic data

directly inside it each time. With the pre-

pared statement, the database engine

can plan ahead and optimize the query.

Security
The potential performance increase isn’t

such a big deal in this small example;

however, the security difference is. Pre-

pared statements protect you from SQL

Injection attacks because they take care

of properly escaping the dynamic data.

In the example, if the $_POST['who_are_

you'] variable contains characters that

have special meaning in an SQL query,

such as ' (the string delimiter), PDO

takes care of escaping them properly

so they don’t cause any problems.

Without prepared statements, you

would have to make sure you escape all

dynamic data going into a query; one

mistake and you open up your database

to all sorts of scurvy treachery or data

leakage.

The table used in Listing 2 has the

 following structure:

CREATE TABLE article_name_test (

 name VARCHAR(255) NOT NULL,

 inserted_on DATETIME NOT NULL

)

You could create this table in the data-

base with the following PHP program:

<?php

$dbh = new PDOU

('sqlite:/tmp/guestbook.db');

$dbh->execU

('CREATE TABLE U

article_name_test (

 name VARCHAR(255) NOT NULL,

 inserted_on DATETIME NOT NULL

)');

?>

Processing XML
Another popular PHP task is dealing

with XML. PHP 5 gives you two splendid

choices: SimpleXML module for basic

XML parsing, and the DOM module for

Document Object Model API action.

With SimpleXML, an XML document

is represented as a PHP object:

<?php

$feed = simplexml_load_fileU

('http://blog.ning.com/U

atom.xml');

foreach U

($feed->entry as $entry) {

 print $entry->title . "\n";

}

?>

This PHP program prints something like

the output in Listing 3.

The simplexml_load_file() function,

like most file-access functions in PHP,

can accept URLs as well as local file

paths. With one step, the function loads

the Atom feed at http:// blog. ning. com/

 atom. xml into the $feed object.

Because the structure of an Atom feed

means the root element has a number

of children named <entry/>, the entry

property of the $feed object can be

treated as an array with foreach().

Similarly, because each <entry/> has

a <title/> child, the value of the title

01 MyCorgi.com: A Network for

Welsh Corgis & Their Owners

02 interstate: For Skaters...By

Skaters...

03 You WILL Experience the Day of

the Ninja

04 Ballroom Dance Channel Social

05 You've Got to Hide Your Love

Away

06 Loud Old Guys

07 Meet Pete

08 Duke City Fix: The Inside Line

on Albuquerque, NM

09 Mahalo Daily

Listing 3: XML Example
Output

PHP Scripting IntroCOVER STORY

24 ISSUE 87 FEBRUARY 2008

021-025_coverintro.indd 24 14.12.2007 14:46:11 Uhr

property of the $entry object is the text

content of that <title/> child. (Note

that while the object properties, such as

entry and title, explicitly correspond to

XML element names, there is no require-

ment that the PHP variable names be the

same as the XML element names – it is

only for convenience that the example

code uses PHP variable names such as

$feed and $entry.)

The SimpleXML module is super for

doing something with an Atom or RSS

feed, or other straightforward XML pro-

cessing tasks.

For heavier XML lifting, PHP also sup-

ports the full DOM Level 3 API. Level 3

DOM also can be a good choice for XML

processing in PHP if you’re already fa-

miliar with the DOM API from another

language, such as JavaScript.

Listing 4 uses the DOM API to build

a small XML document.

The XML document that this example

prints looks like:

<?xml version="1.0"?>

<people>

 <person flavor=U

 "chocolate">alice</person>

 <person flavor=U

 "vanilla">bob</person>

 <person flavor=U

 "strawberry">charlie</person>

</people>

Although the syntax in Listing 4 is

PHP-specific, the classes and methods

are all part of the language-neutral DOM

API. A document is represented by a

DOMDocument object, DOMDocument::

createElement() creates elements that

DOMDocument::appendChild() adds to

the document, and DOMElement::setAt-

tribute() adds an attribute to an element.

The DOMDocument::saveXML()

method returns the XML representation

of the document. If you pass the method

a filename, it writes the XML to that file

instead.

What Next?
If you’re running Linux or Mac OS X,

your computer probably already has

PHP on it. Generally, Linux distributions

are pretty good at bundling up-to-date

PHP versions.

Mac OS X is not as good – head over

to entropy.ch to download Marc Li-

yanage’s great OS X PHP packages. The

main PHP distribution site has Windows

binaries as well as source code [1].

The PHP manual [2] is a fantastic re-

source, not only for the comprehensive

function and class documentation, but

also for all the user-contributed com-

ments. PHP Planet [3], which is an ag-

gregation of popular PHP-themed blogs,

is also a good place to keep up with

what’s going on in the PHP universe.

PECL [4] is the place to go for binary

PHP extensions, such as modules for

embedding Lua in PHP programs, hook-

ing up with the ImageMagick library,

or implementing all sorts of other third-

party integrations.

Good places to look for libraries and

extensions written in PHP (so no messy

compilation for installation) are the PHP

Application and Extension Repository

(PEAR) [5], Zend Framework [6], and eZ

Components [7] sites.

Some popular MVC-style web frame-

works for PHP are CakePHP [8], Sym-

fony [9], and Solar [10].

Conclusions
As I’ve already mentioned, it is easy to

write insecure programs in PHP. Don’t

add to the depressingly large amount of

insecure PHP code.

A good resource for learning about

more secure PHP programming is Essen-

tial PHP Security by Chris Shiflett [11]. If

you’re a server administrator, take a look

at Suhosin [12], which prevents assorted

malicious local and remote attacks. �

David Sklar is a software architect

for Ning, Inc. He has written three

books on PHP programming. Learn-

ing PHP 5 (O’Reilly) provides a gen-

tle introduction to PHP. PHP Cook-

book (O’Reilly), co-authored by

Adam Trachtenberg, is a collection

of recipes for PHP tasks. Essential

PHP Tools (Apress) is a guide to PHP

add-on modules and libraries.

T
H

E
 A

U
T

H
O

R

[1] PHP distribution site:

http:// www. php. net/ downloads. php

[2] PHP manual: http:// php. net/ manual

[3] PHP Planet: http:// planet-php. net

[4] PECL: http:// pecl. php. net

[5] PHP Application and Extension

 Repository (PEAR): http:// pear. php. net

[6] Zend Framework:

http:// framework. zend. com

[7] eZ Components:

http:// ez. no/ components

[8] CakePHP: http:// www. cakephp. org

[9] Symfony:

http:// www. symfony-project. org/

[10] Solar: http:// solarphp. com/

[11] Shiflett, Chris. Essential PHP

 Security. O’Reilly, 2005.

[12] Suhosin: http:// www. suhosin. org

INFO

01 <?php

02

03 // Some data to use

04 $flavors = array('alice' =>

'chocolate',

05 'bob' =>

'vanilla',

06 'charlie' =>

'strawberry');

07

08 // Create a new document

09 $doc = new DOMDocument();

10

11 // Create a root container

element

12 $root = $doc->createElement('p

eople');

13 // And add it to the document

14 $doc->appendChild($root);

15

16 // Add an element for each

person that

17 // contains an attribute with

the flavor

18 foreach ($flavors as $who =>

$what) {

19 $el =

$doc->createElement('person',

$who);

20

$el->setAttribute('flavor',

$what);

21 $root->appendChild($el);

22 }

23

24 // Ensure readable output

formatting

25 $doc->formatOutput = true;

26 // Display the XML

27 print $doc->saveXML();

28

29 ?>

Listing 4: Building a Doc with DOM

COVER STORYPHP Scripting Intro

25ISSUE 87FEBRUARY 2008

021-025_coverintro.indd 25 14.12.2007 14:46:11 Uhr

