
46

After much debate and the usual
delays, the latest version of the
GNU C/ C++ compiler (GCC)

has finally materialized. Version 4.2 of
GCC [1] follows in the trail of many
major and minor changes. For a com-
plete list of changes, refer to the GCC
homepage [2].

The most significant change with ver-
sion 4.2 is support for OpenMP [3], an
open standard for program paralleliza-
tion – especially for systems with shared
memory. OpenMP lets programmers
specify how the compiler and run-time
systems will distribute code segments
over multiple threads for parallel execu-
tion on multi-core systems.

The implementation of OpenMP in the
new GCC version simplifies parallel pro-
gramming on supported systems. Devel-

opers no longer need to go through the
complicated and error-prone process of
manually customizing their source code
to match architecture-specific APIs.

OpenMP Features
The current GCC version supports the
full set of OpenMP features. During the
build, keywords determine how parallel
execution of the code takes effect.

Pragmas allow compilers to build code
with OpenMP extensions without being
OpenMP-aware, which avoids platform-
specific code and an inpenetrable Ifdef
jungle. The #pragma omp ... keyword
tells the compiler that parallelized opti-
mization can take place. Behind the
scenes, GCC uses the Pthread library to
create the matching threads for Unix-
style systems such as Linux.

In the simplest case, loops with a
significant iteration space – that is,
wherever it is worthwhile creating new
threads – are tagged as follows:

#pragma omp for
for(i = 0; i < N; i++)
 a[i] += b[i];

OpenMP has flexible controls; for exam-
ple, you can tell a thread in a complex
algorithm to use a local variable, which
the program adds at the end (reduction):

#pragma omp parallel forU
private(w) reduction(+:sum)U
 schedule(static,1)
for(i = 0; i < N; i++)
{
 w = i*i;
 sum = sum + w*a[i];
}

The ability to ascertain the thread ID
is more useful for testing than it is for
algorithms:

The latest GNU compiler provides better support for parallel program-

ming, and GCC also rolls out some new optimization features. We took

GCC 4.2 for a test drive. BY RENÉ REBE AND SUSANNE KLAUS

GNU Compiler Collection 4.2

PARALLEL SPEED

GCC 4.2REVIEWS

46 ISSUE 83 OCTOBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

m
.w

a
id

m
a
n

n
, p

h
oto

ca
se.co

m

#pragma omp parallel private(id)
int id = omp_get_thread_num();
printf §§
("This is thread %d\n", id);

With the x86 processor family con-
tinuing to grow, the x86 back-end now
has two new architecture options. The
native architecture directive tells GCC to

apply best-possible optimization for the
existing process at build time, based on
cpuid instructions, while generic creates
programs that will run equally well on
AMD, Intel, or Via CPUs.

Bits and Bobs
A new warning, which can be enabled
using the -Waddress option, and which
is contained in -Wall, points out typical
programming errors occurring in com-
parisons between function pointers and
string literal addresses. The -Wextra op-
tion issues a warning in the case of an if
expression followed by a semicolon to
avoid typos like this one:

if (a);
return 1;
return 0;

The new compiler promises to reduce
program launch time and, more specifi-
cally, the time the dynamic linker needs
to resolve symbols, which is an issue
that developers have been unhappy with
for some time, especially in the case of

REVIEWSGCC 4.2

Figure 1: Benchmark results for build times of programs in the test.

1.73

1.73

1.69

1.70

2.06

2.45

2.80

3.16

3.10

2.67

2.92

3.32

3.38

3.49

3.77

4.46

4.38

5.15

3.81

4.48

3.94

4.58

5.10

6.07

3.98

3.92

4.21

5.14

4.82

5.70

4.39

5.21

4.47

5.35

Bzip2

16.20

15.30

15.14

14.76

20.96

22.04

22.34

25.12

25.98

25.02

26.07

28.80

27.20

26.84

27.96

31.41

31.66

34.92

28.63

31.85

28.63

32.02

37.35

40.94

29.80

28.64

30.45

34.76

34.32

38.56

30.73

34.81

31.79

35.73

Gnupg

0.92

0.91

0.93

0.84

1.29

1.59

1.58

1.77

1.50

1.66

1.80

1.93

1.71

1.90

2.05

2.15

2.69

2.79

1.94

2.22

2.10

2.26

2.92

3.28

1.96

2.15

2.35

2.63

3.00

3.21

2.43

2.67

2.42

2.71

Gzip

14.12

13.88

13.66

13.81

17.36

18.21

19.43

20.18

20.40

19.32

20.54

20.93

20.77

22.48

23.34

24.89

29.29

30.57

23.84

25.08

24.12

25.48

32.91

34.05

22.36

23.80

26.86

28.29

31.24

33.43

27.59

28.57

27.55

29.07

Lame

63.76

59.34

59.03

58.65

73.69

74.22

76.53

79.92

82.20

79.69

82.84

86.65

87.22

85.97

88.19

94.54

93.19

100.17

88.44

95.54

89.05

95.31

97.23

104.21

91.03

87.60

92.29

98.69

97.54

105.38

91.71

99.22

92.11

99.16

OpenSSL

17.76

15.54

16.21

15.16

33.99

64.11

51.70

45.10

45.18

24.53

26.85

30.41

47.95

79.83

64.67

58.52

68.42

65.09

65.91

61.23

64.14

58.95

72.26

65.00

49.71

87.50

71.94

61.40

73.01

64.34

70.75

63.09

69.21

61.23

Tramp3d

(in seconds – smaller is better)

3.4.0 -O0

4.0.0 -O0

4.1.0 -O0

4.2.0 -O0

3.4.0 -O1

4.0.0 -O1

4.1.0 -O1

4.2.0 -O1

3.4.0 -Os

4.0.0 -Os

4.1.0 -Os

4.2.0 -Os

3.4.0 -O2

4.0.0 -O2

4.1.0 -O2

4.2.0 -O2

4.1.0 -O2 -loops

4.2.0 -O2 -loops

4.1.0 -O2 -tracer

4.2.0 -O2 -tracer

4.1.0 -O2 -vect

4.2.0 -O2 -vect

4.1.0 -O2 -x

4.2.0 -O2 -x

3.4.0 -O3

4.0.0 -O3

4.1.0 -O3

4.2.0 -O3

4.1.0 -O3 -loops

4.2.0 -O3 -loops

4.1.0 -O3 -tracer

4.2.0 -O3 -tracer

4.1.0 -O3 -vect

4.2.0 -O3 -vect

Advertisement

C++. Local symbols are no longer visi-
ble by default, and the compiler auto-
matically applies class visibility attri-
butes to members.

The -fno-toplevel-reorder option now
makes it possible to output functions
and variables in source code file order
for code such as inline assembler that
relies on a specific code order.

Note that new overflow optimization
takes place as of optimization level -O2.
The new complier can assume that an
overflow will not occur for a loop such
as for (int i=1; i>0; i*=2) and thus
optimize to form an infinite loop.

The GCC developers have added func-
tionality to the new “200x” C++ stan-
dard, which is still in the standardization
phase. For example, the TR1 namespace
now includes <random>, <complex>.
The lock-free container templates devel-
oped during Google’s Summer of Code
have also been integrated.

Regression
The good news is that GCC version 4.2
does not introduce many new bugs. A
short test, in which we used the new
compiler to build a complete system
with T2 [4], yielded just two errors.

For one thing, far more memory was
needed to build a couple of files that be-
long to the Xorg server [5] package, forc-

ing the kernel to terminate the compiler
on systems with less than 1GB RAM. For
another, OpenSSL uses function pointer
typecasts [6] in a way that the C stan-
dard does not define; this causes the
program to quit at run time [7].

Benchmarks
The lab machine was an Intel Core 2
Duo with a clock speed of 2GHz and
1GB RAM.

We used the current version of Open
Bench to test GCC versions 3.4, 4.0, 4.1,
and 4.2 and compiled with the CPU in
64-bit mode for 64-bit programs. We
measured the build time (Figure 1) and
the run time in seconds (or the run time
per iteration in milliseconds in the case
of OpenSSL) (Figure 2).

Shorter Run Time
On initial inspection, we noticed that
version 4.2 spends more time optimizing
than its predecessors. The reward for
this effort is a shorter run time, even for
some legacy C programs.

Faster Build Time
Although the compiler is far slower
when the typical -O2 and -O3 optimiza-
tion levels are enabled, the build time
during software development using -O0
is faster.

A quick inspection of
the logfiles for the bench-
mark build reveals that
the new compiler vector-
izes more loops – 14 for
Gzip compared with 12
for GCC 4.1.

Conclusions
OpenMP integration in
GCC 4.2 facilitates the
task of programming on
multi-core systems, which
helps the free compiler
project keep pace with
commercial compilers.

Thanks to the wide-
spread introduction of
multi-core CPUs, parallel-
ization has become a big
topic for many program-
mers. The fact that each
version of the compiler
has taken more time to
optimize code is slightly
worrying.

New Projects
The new projects scheduled for comple-
tion before the new GCC version 4.3 is
released include the Eclipse project’s
Java compiler, which has full support for
Java 1.5. Integration of the MPFR library
will help standardize calls to standard
mathematical functions.

Support for the future 200x C++ stan-
dard will be extended in the next version
of GCC. Optimization functions for more
recent CPU types, such as Core 2 Duo
and AMD Geode, have already made
their way into the current GCC developer
version. ■

GCC 4.2REVIEWS

48 ISSUE 83 OCTOBER 2007 W W W. L I N U X- M A G A Z I N E . C O M

[1] GCC homepage: http:// gcc. gnu. org

[2] GCC 4.2 changelog: http:// gcc. gnu.
org/ gcc-4. 2/ changes. html

[3] OpenMP: http:// www. openmp. org/

[4] T2 SDE: http:// www. t2-project. org

[5] Bugzilla report on Xorg server: http://
gcc. gnu. org/ bugzilla/ show_bug.
cgi?id=31172

[6] Patch for OpenSSL with GCC 4.2:
http:// www. nabble. com/
-PATCH--OpenSSL-vs-GCC-4. 2.
0-t3795606. htm

[7] Open Bench: http:// www. exactcode.
de/ site/ open_source/ openbench

INFO

Figure 2: This diagram shows the run times for various compiler versions.

20.39

20.86

20.50

20.30

8.54

8.86

9.13

9.30

8.59

9.06

9.22

8.57

8.54

8.62

9.10

8.70

8.86

8.49

9.09

8.66

9.09

8.71

8.80

8.49

8.19

8.71

9.07

8.59

8.79

8.59

8.98

8.62

9.03

8.70

Bzip2

17.01

17.34

20.00

17.73

9.22

9.77

8.57

8.87

9.35

11.29

9.12

8.98

10.79

9.74

8.86

6.02

8.88

8.96

8.86

8.98

8.42

8.35

8.29

8.69

9.26

9.57

8.97

9.19

8.34

8.88

8.41

9.29

9.39

9.23

Gnupg

16.68

16.20

16.17

16.18

7.73

7.78

7.65

8.06

7.46

8.28

8.22

8.70

7.46

7.21

7.23

7.99

7.34

7.99

7.34

7.88

7.26

8.06

7.34

7.91

7.51

7.30

7.27

8.01

7.22

8.02

7.34

7.84

7.21

8.00

Gzip

149.90

145.69

144.28

142.15

69.55

67.95

66.93

66.07

66.44

66.41

64.74

64.54

66.54

64.88

64.63

62.81

56.29

56.72

64.93

62.18

64.81

62.72

56.49

56.36

61.41

64.75

64.65

62.05

56.16

56.70

64.56

62.09

64.48

62.51

Lame

4.81

4.91

4.79

4.78

1.26

1.23

1.21

1.15

1.27

1.21

1.24

1.18

1.22

1.19

1.18

1.14

1.19

1.15

1.20

1.17

1.21

1.13

1.21

1.18

1.18

1.18

1.19

1.13

1.18

1.14

1.19

1.17

1.19

1.13

OpenSSL

177.56

160.82

160.81

160.22

13.85

5.36

4.29

4.78

8.95

44.67

10.35

10.47

8.64

5.21

3.96

4.64

2.59

3.38

3.95

4.62

3.98

4.61

2.60

3.39

8.63

5.19

2.80

3.61

2.58

3.46

2.82

3.60

2.98

3.60

Tramp3d

3.4.0 -O0

4.0.0 -O0

4.1.0 -O0

4.2.0 -O0

3.4.0 -O1

4.0.0 -O1

4.1.0 -O1

4.2.0 -O1

3.4.0 -Os

4.0.0 -Os

4.1.0 -Os

4.2.0 -Os

3.4.0 -O2

4.0.0 -O2

4.1.0 -O2

4.2.0 -O2

4.1.0 -O2 -loops

4.2.0 -O2 -loops

4.1.0 -O2 -tracer

4.2.0 -O2 -tracer

4.1.0 -O2 -vect

4.2.0 -O2 -vect

4.1.0 -O2 -x

4.2.0 -O2 -x

3.4.0 -O3

4.0.0 -O3

4.1.0 -O3

4.2.0 -O3

4.1.0 -O3 -loops

4.2.0 -O3 -loops

4.1.0 -O3 -tracer

4.2.0 -O3 -tracer

4.1.0 -O3 -vect

4.2.0 -O3 -vect

(in seconds – smaller is better)

