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If you look for a route on a map, your 
eyes will fall fairly directly on an effi-
cient solution. The human brain is 

capable of making judgments without 
much attention to optimization algo-
rithms or distance calculations. This in-
tuitive approach is very foreign to digital 
computers. Conventional computer pro-
grams tend to operate through mathe-
matical solutions, which make them in-

efficient for tasks such as prediction and 
pattern recognition. An experimental 
form of program known as an Artificial 
Neural Network (ANN) addresses this 
problem by making the computer oper-
ate more like a human brain.

An artificial neural network simulates 
a collection of nerve cells connected by 
means of weighted paths. One successful 
use for neural networks is in the field of 

face recognition. A neural network can 
recognize a face on the basis of a collec-
tion of colored pixels, despite noise or 
distortion, just as a human can. Other 
applications for neural network technol-
ogy include optical character recognition 
or forecasts such as sunspot activity and 
share prices.

In this article, I take a look at some of 
the basic principles of neural networks 
and introduce the free libfann library, 
which you can use to build your own 
neural network applications.

Natural Role Model
Artificial neural networks simulate the 
structure of the brain. A neural network 
models the effect of a collection of neu-
rons that influence each other’s states 
through a large number of connections. 
Different weighting of the neural connec-
tions, which represent the nerve fibers in 
the brain, produces a specific output 
value for a specific pattern of incoming 
neurons. The connections between the 

3, 4, 8, 11… ? A neural network can complete this series without knowl-

edge of the underlying algorithm – by a kind of virtual gut feeling. We’ll 

show you how neural networks solve problems by simulating the 

behavior of a human brain. BY ANDREAS ROMEYKE
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neurons are fine-tuned through a process 
analogous to training. Through the train-
ing process, the neural network learns to 
associate specific input patterns with 
specific output values. If the training is 
successful, the artificial brain will be ca-
pable of discovering solutions not specif-
ically presented as examples.

Figure 1 shows a nerve cell, the natu-
ral role model for neurons in ANNs. The 
nerve cell comprises a cell core and den-
drites that branch out from it. Dendrites 
transport electrical impulses to the core 
of the cell. If the sum total of these im-
pulses exceeds a predefined threshold 
value (action potential), the neuron be-
comes active, sending impulses to the 
cells it is linked with.

An artificial neuron simulates the 
properties of its natural counterpart: 
It adds the potentials of its dendrites, 
applies a fixed activation function, and 
passes the results to all the cells to 
which it is linked (Figure 2). Links to 
other neurons are weighted to attenuate 
or amplify the signal along its path.

The activation function defines the 
threshold at which the neuron will acti-
vate. Below this value, the neuron will 
not send signals. This function is often a 
simple threshold function that returns a 
1 if the sum of all outputs is above a spe-
cific value. It is common to represent the 
activation function in a separate neuron 
known as the on neuron. You can thus 
weight the on neuron like the links to 
other neurons.

Design
The training process adapts the neural 
network for a specific situation; how-
ever, at the structural level, the devel-

oper must also 
choose a topology 
for the neural net-
work that reflects the use for which it is 
intended. Different types of links be-
tween neurons lead to networks with 
different characteristics [2]. 

One of the simplest network topolo-
gies, and one that is well explored by 
scientific research, is the feed forward 
MultiLayer Perceptron (MLP) model [3]. 
This model divides the network into sep-
arate layers. This network has no feed-
back; in other words, actuation potential 
simply propagates from left to right (see 
Figure 3).

A neural network’s abilities, such as 
the ability to recognize patterns or pre-

dict values, is a product of the network’s 
internal structure. 

The following operations change the 
characteristics of an ANN:
• adding new connections or deleting 

existing ones
• modifying the weighting of links be-

tween neurons
• modifying the neuron threshold values
• adding or deleting neurons.
Training provides the right weighting to 
solve a specific problem. In the case of 
character recognition, the input would 
be a bitmap or a section of text and the 
matching character codes. In the case of 

Figure 1: Neuroscientists regard the branching of nerve cells as 

the basis for the power of the human brain to recognize patterns 

or predict system states that are difficult to calculate.
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Figure 2: Just like their natural counterparts, artificial neurons cal-

culate the sum of the actuation potential of the neurons linked to 

them and pass the signal on to other neurons via weighted connec-

tions. Modifying various connecting factors will modify the behavior 

of the network.

w{1}

w{3}

w{2}

f(x)

w{0}

On Neuron

Aktivation function

Input Output

Figure 3: The multilayer perceptron, which allows potential to propagate from inputs to 

outputs without feedback loops, is the simplest and best explored artificial neural network  

structure.
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stock market behavior or sunspot activ-
ity, historic data is used to train the neu-
ral network (Figure 6). A learning func-
tion compares the example input with 
the target values and modifies the neu-
ron link, weighting until the reaction of 
the network matches the target.

Inside the Mind
I’ll use a simple example to describe 
what happens in a neural network’s 
learning phase. Imagine you want a net-
work with four neurons to predict the 
mean value of two numbers (see Figure 
4). On the left side of the figure, the 
numbers 0.1 and 0.3 are input at the 
input neurons. The neural links have 
random weighting values at first. The ac-
tivation function, which defines the way 
a neuron reacts to input, is f(x)=x. More 
powerful ANNs need more complex 
functions, of course, but this simple ex-
ample is adequate to explain the under-
lying principle.

If the input neurons have the values 
0.1 and 0.3, weighting the connections 
for the potentials gives the following val-

ues: (0.1*1.0 + 0.3*0.9 + 1.0*0.4) = 
0.77 for the first neuron N(1.1), and 
(0.1*0.2 + 0.3*0.3 + 1.0*0.7) = 0.81, 
for the second neuron N(1.2). The neu-
ron between the input and output layers 
has a value of (0.77*0.5 + 0.81*0.1 + 
1.0*0.2) = 0.666. The output neuron re-
turns a value of: 0.666*0.2 + 1.0*0.3) 
= 0.433, although the correct average of 
the numbers 0.1 and 0.3 is 0.2.

In other words, the network did not 
come very close to the correct value in 
this first pass. To allow the ANN to get 
its math right, I need to modify the 
weighting for the neural links. The error 
contribution lets me discover which 
weighting between which neurons I 
need to correct. The error contribution is 
the square of the expected output value, 
minus the square of the values returned 
at the output neurons. The resulting 
value is known as the mean squared 
error (MSE or MQLE).

Reverse Gear
Action potentials typically move forward 
through the network from the input to-

ward the output (feed forward). A teach-
ing method known as back propagation 
reverses the direction: It feeds the error 
value returned at the output backward 
through the network toward the input on 
the basis of the weighting of the individ-
ual connections. The distribution of 
error values over the nodes of the mesh 
network provides the basis for modifying 
the weighting. (The experts have devel-
oped several other teaching methods in 
addition to back propagation, and some 
methods promise better results for cer-
tain tasks.)

Figure 5 shows how the error contri-
bution propagates backward from the 
output to the input. The potential of the 
output neuron is the sum of its two 
links: the link to the on neuron with a 
weighing of 0.3, and the connection to 
the neuron in the underlying layer, 
which is weighted at 0.2. On this basis, 
the error contribution (0.433 - 0.2 = 
0.233) at the output neuron is distrib-
uted over the two links. The path to the 
on neuron has a share of 0.3/(0.2+0.3) 
= 60%, and the path to the underlying 
neuron has a share of 0.2/(0.2+0.3)= 
40%. This approach provides the ability 
to calculate the total error potential for 
each neural link.

Finally, a fixed learning factor stipu-
lates how an error contribution influ-
ences the weighting. A good choice of 
learning factor is a major prerequisite for 
effective training. Just like many other 
network parameters, the factor is often 
unknown until you start training. Com-
plete training of an ANN will always 
comprise a large number of back-propa-
gation cycles with pairs of input and out-
put values for the problem you need the 
network to solve after training.

Training Plan
It is obvious that weighting should never 
be zero because there would be no way 
of tracing errors back. Too evenly distrib-
uted or too widely differing weighting 
also has a negative effect on the learning 
process. For an efficient ANN, it is pref-
erable for signals to propagate through-
out the whole network except for spe-
cific areas of the network to handle spe-
cific patterns.

In practical applications, the simple 
activation function f(x)=x will be re-
placed by a hyperbolic tangent or a sig-
moidal function. This improves the per-

Figure 4: The behavior of a neural network is defined by neural link weighting and the on 

neurons, which fix the threshold as of which neurons will pass on stimulus to others.
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formance of the neural network, as these 
functions can map an input range to in-
finity with manageable values. Back 
propagation also assumes that the acti-
vation function can be reversed. The ad-
vantage of this extra effort is that three-
layer perceptrons are capable of learning 
arbitrary, mathematic functions, assum-
ing they use suitable non-linear activa-
tion functions.

The FANN Library
The Fast Artificial Neural Network Li-
brary (FANN) is a free, open source li-
brary that provides a C interface for im-
plementing multilayer neural networks. 
The library was developed in 2003 by 
Steffen Nissen at the University of 
Copenhagen as part of his scientific re-
search, and it is still under active devel-
opment. Libfann is easy to use and well 
documented, and it will run on any pop-
ular platform. The project page also has 
a couple of practical examples that make 
it easier to get started. Apart from C, 
there are bindings for all common pro-
gramming languages. As of this writing, 
libfann is one of the fastest implementa-
tions for neural network simulation.

Most Linux distributions include lib-
fann version 1.2. aptitude install lib-
fann1-dev will install the library on 
Debian. The source code, which you can 
build in the usual way, configure; make; 
make install, is available from [1].

Building Your Own
All neural network applications are dif-
ferent, and it is not possible to explore 
all the subtleties of this complex field in 
a single article. The libfann project web-
site includes a reference manual with de-
scriptions and usage notes for the func-
tions in the library. See the Linux Maga-
zine website [4] for an example C pro-
gram that creates a neural network and 
then goes on to train it.

If you feel like experimenting, a few of 
the more important libfann functions are 
fann_train(), fann_run(), and fann_
test(). fann_train() expects a network 
structure, struct fann * ann;, as its first 
parameter; you can call ann=fann_
create(connection_rate, learning_rate, 
num_layers,num_input, num_neurons_
hidden, num_output); to create the 
structure. The connection_rate specifies 
the strength of the links between the 
neurons. The right value is normally 1.0. 

The learningrate should be between 0.7 
and 0.00001. The num_layers parameter, 
and the values that follow it, tell libfann 
the number of layers in the network and 
the number of neurons in each layer.

Training and Thinking
Parallels to human thinking are useful 
in understanding what happens during 
training and in discovering the source of 
any problems on neural networks – after 
all, neural networks do emulate the 
structure of the human brain. If the 
training session feeds the historic data in 
chronological order, the network might 
develop tunnel vision. In other words, 
the ANN would simply encode the struc-
ture of the first or possibly a couple ex-
amples in its neurons. This would affect 
the ANN’s ability to handle new data. 
A random order avoids premature gener-
alization and thus avoids the need to re-
train the neural network after an invalid 
structure is established in the neural 
links. The Perl script [5] thus ensures 
a random data order.

Data that the network has not seen 
during training helps you judge how 
well the ANN can handle abstractions at 
the current state of training. The Perl 
script [5] splits the data into two sub-
sets. The error occurring here is referred 
to as the mean squared generalization 

error, or MQGE. Along with the mean 
squared learning error (MQLE), it tells 
whether the neural network is ready to 
predict the future, or whether more 
training is needed. Libfann injects the 
two values via the fanntest(ann, in-
putarray, expected_outputarray) and 
fann_get_MSE() functions. Finally, 
fann_save(ann, filename) stores the net-
work structure and the current weight-
ing for future use.

Real Life
Whether training is successful or not de-
pends not only on the data and the data 
order, but also on the suitability of the 
network structure for the task in hand – 
starting with the activation function. 
Libfann uses the Sigmoid function by de-
fault, and this is fine for predicting sun-
spot activity and other phenomena that 
fall in a positive range. For share price 
variations and other temporal series con-
taining negative values, you will need 
fann_set_activation_function_
output(ann, FANN_SIGMOID), the hy-
perbolic tangent function.

The learning factor also has a major 
influence on success or failure of train-
ing in that it specifies what effect learn-
ing errors have on the weighting of the 
links between neurons and on the num-
ber of neurons on the network. The 

Figure 5: Neural networks learn by making errors guessing specific values, tracing the errors 

back through the whole structure, and re-weighting individual links to neurons on the basis of 

size of the error contribution compared to the total error.
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number of neurons in the intermediate 
layer should be kept to a minimum at 
first. Three or a maximum of 15 neurons 
will be fine for most applications. Trial 
and error will also give you a gut feeling 
for appropriate numbers. For this train-
ing session, 500,000 learning steps 
should be sufficient.

If the number of learning errors does 
not drop continuously, the network is 
stuck at a local minimum, and its perfor-
mance is unlikely to improve no matter 

how long you continue training. In this 
case, you will need to restart training 
with a smaller learning factor and possi-
bly change the structure of the network. 
Inspecting the fann_save file could re-
veal why you can’t improve the perfor-
mance of a network simply by training: 
Individual neurons with excessive 
weighting often interfere with the learn-
ing process.

If the learning error continues to drop, 
as shown in Figure 7, it is time to take a 

look at the generalization error: If the 
curve is smooth, you can’t expect too 
much in the line of predictive ability. 
The network has learned the training 
values by heart and will be thrown by 
unknown input values. To change this, 
you will need to reduce the number of 
hidden neurons. 

If the generalization error is at a con-
sistently high level, the number of hid-
den nodes is too low, or the training ses-
sion was not intensive enough.

Libfann’s fann_load loads a network 
stored previously using fann_save(); 
fann_run(ann, input) returns the output 
to the trained network. The Perl script 
[5] automates a test of the neural brain. 
In this test, the output from a success-
fully trained network was pretty close 
to the predictions.

Conclusion
Libfann makes it easy to set up, train 
and use ANNs. Users don’t need to 
worry about mathematical details such 
as inverting the activation function. 
Choosing parameters such as the learn-
ing rate and the number of intermediate 
neurons does take some experience and 
patience. The learning error, the general-
ization error, and an understanding of 
the saturation of individual neurons will 
give you some hints as to why training 
fails for a specific network. Libfann will 
help you to ascertain these values. 

The current version 2.0 of the libfann 
library extends the functional scope, 
adding new learning algorithms and 
neuron types.  ■
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Figure 6: A neural network with three layers of neurons draws on the sunspot activity of the 

last 30 years, which is fed to the input neurons to predict the intensity for next year.
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Figure 7: If training is successful, the learning error (MQLE) will drop continually. At the same 

time, the neural network will continually improve its ability to abstract from values; this is 

represented as a falling generalization error (MQGE) value.
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