
64

secure versions of FTP that offer built-in
encryption for communication as well as
encryption. I will leave such details for
your own network and will focus,
instead, on the business of automating
file transfer.

Using .netrc
Whether you are operating FTP in batch
mode or interactive mode, it is often
better to have a mechanism that lets you
login automatically to a remote site.
Before we start into the details of FTP
automation, I'll begin with a look at
automated login. A special file called
.netrc, which is located in your $HOME
directory, allows you to automate login
in FTP. The file permissions for .netrc
should be set to read/ write for the
owner only – chmod 600. The file can
contain multiple entries for remote sites.
When a .netrc file is present, if the
machine name given in the FTP com-

mand line matches the name of a
machine in .netrc, FTP will use the login
and password associated with the .netrc
entry.

The format of the .netrcfile comes
in two flavors. I prefer the following
format:

machine <remote_host> U
login <login> U
password <password> U
password <account_password>

Each remote host receives a single entry
in the file. The password is the password

01 machine ftp.emea.ibm.com login
anonymous password david.
tansley@btinternet.com

02 machine uk01lx6001
login dxtans password
lOopy

03 machine uk04lx6003
 login dxtans
password mas123

Listing 1: .netrc file

File Transfer Protocol (FTP) is the
defacto standard for transferring
files over TCP/ IP networks. The

basic FTP protocol has been around for
years, and though FTP is not especially
secure, it will be around for many years
to come due to its many features and
well established user base. This article
examines some techniques for automat-
ing FTP through scripting. I will not be
focusing on the different types of FTP
servers like wu-ftp or vs-ftp but will con-
centrate instead on the client side. I’ll
show you how you can use a script to
connect to an FTP server and retrieve
files.

Part of this discussion will include a
look at simple login security, but keep in
mind that the level of security you’ll
need for your own network will depend
on the policies of your organization. It is
possible, for instance, to use FTP with a
secure VPN-style tunnel. You can find

If you find your self executing the same few steps in FTP, you’ll save

time and effort with a little automation. BY DAVID TANSLEY

AUTOMATIC
 DELIVERY

Building scripts for automated FTP

AUTOMATIC
 DELIVERY

A
n

n
a
 M

a
ria

 L
o
p
ez

 L
o
p
ez

Automating FTPSYSADMIN

64 ISSUE 59 OCTOBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

65

you need to connect to the remote host.
The account password is only useful if
the remote host requires another authen-
tication process. Typically, only the first
three entries are necessary.

Listing 1 is a .netrc file with three
entries. The first entry is a web FTP pub-
lic server. The login of anonymous gen-
erally means that files can be uploaded
or downloaded from a publicly accessi-
ble folder. Though it is considered good
form to accompany anonymous login
with your email address as the pass-
word, this rule is not enforced. The other
entries in Listing 1 are hosts on an inter-
nal network.

To connect to the host uk01lx6001, you
just need to type in the following:

$ ftp uk01lx6001

As discussed earlier, when FTP starts, it
will look for the .netrc file. In this case,
since I am connecting to the host

uk01lx6001, the client will search .netrc
for the host name uk01lx6001; it will
then use the login and password to con-
nect to the remote server.

Getting a File
We can now put together a rather simple
FTP script that connects to a remote host
and grabs the /etc/hosts file (see Listing
2). Note that FTP is invoked with the
interactive mode turned off and verbose
mode turned on. Using the here docu-
ment approach denoted by the <<
symbol, we specify that everything
between the first and second occurrence
of the word mayday will be taken as
read from standard input. First we open
a connection to the host uk01lx6001; we
inform FTP that we will be using ascii
for the transfer, then we change the
directory on the local side to /tmp, and
change the remote directory to /etc.
Next, we get the hosts file across, so that
it will reside in /tmp. We then quit FTP.
The second occurrence of the word may-
day terminates our standard input, and
thus, as there are no more lines of code,
the script will exit.

Running the code in Listing 2 gives the
output shown in Listing 3. Notice that,
by default, FTP will try to perform the
transfer in binary. You can change this
behavior by issuing the ascii command.
Also notice in the output that we are
indeed initiating FTP in passive mode.

Files in a List
You can use a here document to parse a
list of files to transfer, however, using

this method means you have to connect
and terminate for each transfer. Listing 4
demonstrates this technique. You may
be thinking you could put a for loop
inside the FTP code block, but you can-
not, as you will be actually connected to
the remote host in FTP, not in the bash
shell.

.netrc Tricks
In some cases, you may wish to check
for the presence of the .netrc file before

Before delving deeper into how to auto-
mate FTP, let's look the most common
FTP options:

-p: specifies that the connection should
be in passive mode. You are the client,
so definitely use passive mode for data
transfers. Passive mode is the preferred
approach when behind a firewall
because the client tells the server which
port to use. This is the default now, but
some older versions still do not use pas-
sive as the default.

-i: turns off interactive prompting when
negotiating FTP transfers. If you know
what files you need to get or put, this
option is invaluable.

-n: stops FTP from attempting auto login
with the initial connection. If auto login
is enable, FTP checks the .netrc for login
information. If no match for the host is
found in .netrc, FTP will then prompt for
the login/ password.

-v: sepcifies verbose mode. This option
tells FTP to show what is happening by
being very verbose.

Common FTP Options
01 #!/bin/bash

02 # ftp1

03 ftp -i -v <<mayday

04 open uk01lx6001

05 ascii

06 lcd /tmp

07 cd /etc

08 get hosts

09 quit

10 mayday

Listing 2: ftp1

01 $ ftp1

02 Connected to uk01lx6001
(168.14.2.4).

03 220 uk01lx6001 FTP server
(Version 4.1 Wed Mar 26
16:45:44 CST 2003) ready.

04 331 Password required for
dxtans.

05 230-Last unsuccessful login:
Tue Jan 18 12:18:34 GMT 2005
on /dev/pts/0

06 230-Last login: Tue Mar 29
18:40:33 BST 2005 on ftp from
::ffff:168.14.2.9

07 230 User dxtans logged in.

08 Remote system type is UNIX.

09 Using binary mode to transfer
files.

10 200 Type set to A; form set to
N.

11 Local directory now /tmp

12 250 CWD command successful.

13 local: hosts remote: hosts

14 227 Entering Passive Mode
(162,14,2,4,209,161)

15 150 Opening data connection
for hosts (2370 bytes).

16 226 Transfer complete.

17 2443 bytes received in 0.00135
secs (1.8e+03 Kbytes/sec)

18 221 Goodbye.

Listing 3: Output of ftp1
01 #!/bin/bash

02 # ftp2

03 list="hosts hosts.allow hosts.
deny"

04 for files in $list

05 do

06 ftp -i -v <<mayday

07 open uk01lx6001

08 ascii

09 lcd /tmp

10 cd /etc

11 get $files

12 quit

13 mayday

14 done

Listing 4: ftp2

SYSADMINAutomating FTP

65ISSUE 59 OCTOBER 2005W W W. L I N U X- M A G A Z I N E . C O M

initiating an FTP session. For instance,
you may wish for the script to follow
one authentication path if .netrc is pres-
ent and perform a different form of
authentication if .netrc is missing. Keep
in mind that it is a good idea to use
.netrc whenever you can. Do not rely on
interactive authentication if you don’t
have to, and for heaven's sake, do not
hard code the password into an FTP
script. Listing 5 contains a simple test
block that checks to see if the .netrc file
is present and readable by the script; if
the test reveals that the .netrc file is pres-
ent, the script presents the file to stan-
dard output.

If you want to offer the option of
allowing the user to use one of the .netrc
entries, it is sometimes convenient to
present the contents of the file to the
user, so that the user can select which
record entry to use. One way of present-
ing the .netrc file to the user is to cat the
file to standard output using the -n
option, which will number each line.
Listing 6 presents a framework showing
how a solution using the -n option could
be achieved. First we check that the
.netrc is readable and thus present. We
can then determine how many records
are in the .netrc file using the following
command:

max_recs=`cat U
$netrc_file | awk U
'END{print NR}'`

You may be wondering why we did not
use the wc -l command, as this alterna-
tive approach would require less pro-
cessing. Unfortunately, if we use the wc
-l command, the command pumps the
variable substitution full of spaces,
which does not look good cosmetically

when the file is displayed to standard
output.

If you use the cat command, all record
entries are displayed to standard output,
but only the host and login fields of each
record appear. Listing 7 shows the out-
put of this code.

We next prompt the user to enter a
number that represents the record they
wish to use, using the $max_recs vari-
able, which holds the total number of
records, as an upper limit. Once
selected, the input number is used to
extract the required fields from the
record using awk’s NR function. Follow-
ing this, the results are echoed to stan-
dard output.

Listing 6 demonstrates one way to use
a menu driven interface. I have not put
in any serious error checking code, apart

from a numerical range check, as I want
to demonstrate that it does not take too
much code to put together a menu-
driven framework.

Checking for Errors
You will want to check for errors at the
end of the FTP script. FTP provides quite
a few error codes. Table 1 shows a few
common return codes that may be con-
sidered errors or warnings.

One way to check for errors is to egrep
at the end of a script run, as shown in
Listing 9. The first thing we need to do is
redirect all FTP output into a log file, as
follows:

ftp -i -v >> $log 2>&1 <<mayday

FTP will redirect all output including
errors from the FTP session into a log file
whose value is held in the variable $log.
Once the FTP session has finished, we
simply use egrep to include a list on
codes or words we wish to match, with
each pattern separated by the bar | sign.
When you are using any grep command
within a script, it is always a good idea
to redirect the output of the pattern
match to /dev/null; this keeps unwanted
messages from cluttering the standard
output:

if egrep U
"202|421|426" U
$log > /dev/null 2>&1

01 #!/bin/bash

02 # ftp4

03 netrc_file=$HOME/.netrc

04 if [-r "$netrc_file"]

05 then

06 cat $netrc_file | awk '{print
$2,$4}'

07 else

08 echo "$netrc_file not
present"

09 fi

Listing 5: ftp4

01 #!/bin/bash

02 # ftp5

03 netrc_file=$HOME/.netrc

04 if [-r "$netrc_file"]

05 then

06 max_recs=`cat $netrc_file |
awk 'END{print NR}'`

07 cat -n $netrc_file | awk
'{print $1,": connect to
[",$3,"] as user[",$5,"]"}'

08

09 echo -n " Select record to
use [1 .. $max_recs] :"

10 read ans

11 if [$ans -ge 1] && [$ans -le
$max_recs]

12 then

13 host=`cat $netrc_file | awk

"NR==$ans"|awk '{print $2}'`

14 user=`cat $netrc_file | awk
"NR==$ans"|awk '{print $4}'`

15 password=`cat $netrc_file |
awk "NR==$ans"|awk '{print
$6}'`

16 else

17 echo "invalid choice, needs
to be [1 .. $max_recs]"

18 exit 1

19 fi # $ans in numeric range

20 echo -e "selected info is:\
nhost [$host]\nuser [$user]\
npassword [$password]"

21 else

22 echo " Sorry cannot read
$netrc_file"

23 fi # netrc present

Listing 6: ftp5

202 Command not implemented

421 Service not available

426 Transfer aborted

 450 File unavailable

 500 Syntax error

 501 Syntax error in arguments

 503 User not logged in

 550 File unavailable

 553 Illegal filename

 666 File or directory does not exist

 777 unknown host

 999 Invalid command

Table 1: FTP Return Codes

Automating FTPSYSADMIN

66 ISSUE 59 OCTOBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

If egrep returns true with any match, we
simply exit with a 1 and echo a message
to standard output and the log file; If
egrep does not return a true, we exit
with a 0 status. If you will be running
scripts in batch mode, rather than inter-
actively from the command line, you
should not program the script to echo
anything out to the standard output. If
you are running batch mode scripts, you
should instead write directly to a log file.
If this is the case, you could amend the
exit code to:

echo "Errors" >> $log

And likewise, for a good exit message,
use the following:

echo "OK" >>$log

Conclusion
If you find yourself repeating the same
few FTP commands over and over again
for a recurring file transfer task, you
can write a script to automate the file
transfer.

Automated FTP is a very simple and
productive means for transferring files
between hosts. Do not be afraid of creat-
ing different FTP scripts to fill different
administration requirements. The

scripts are easy to write and easy to
adapt. Whatever the purpose of the
script, I do strongly suggest you use the
.netrc file rather than embedding creden-
tials in the script. ■

01 #!/bin/bash

02 # ftp7

03 log=ftp.log

04 >$log

05

06 list="hosts telnet.conf"

07 host="uk01lx6001"

08

09 echo "Script name [`basename
$0`]" >>$log

10 for files in $list

11 do

12 ftp -i -v >> $log 2>&1
<<mayday

13 open $host

14 ascii

15 lcd /tmp

16 cd /etc

17 get $files

18 quit

19 mayday

20 done

21 if egrep "202|421|426|450|500|
501|503|550|553|666|777|999" \

22 $log > /dev/null 2>&1

23 then

24 echo "Errors" | tee -a $log

25 exit 1

26 else

27 echo "OK" | tee -a $log

28 exit 0

29 fi

Listing 7: ftp7

advertisement

SYSADMINAutomating FTP

67ISSUE 59 OCTOBER 2005W W W. L I N U X- M A G A Z I N E . C O M

