
Two or three pages are quickly
scanned using the excellent xsane GUI
tool by the Sane project [2], which sup-
ports almost any known scanner via the
Sane back-end. Both the Epson photo
scanner and the HP All-In-One Officejet
in our Perlmeister lab worked just fine
on Linux.

After scanning, save the individual
pages as PNG files. Selecting 200 dpi as
scanner resolution should be fine for this
job to keep the text legible. The convert
utility steals a trick from [3], merging
multiple pages to give you a single PDF
document:

convert -density 200 U

-quality 95 \
-resize "1600x1600>" U

*.png archive.pdf

This command collects the *.png files
from the current directory, restricting the
height and width to 1600 pixels. Smaller

images are left untouched due to the >
character. convert bundles the individual
pages to create a multiple page PDF file
with a resolution of 200 dpi. The PNGs
are compressed to JPGs in the PDF keep-
ing 95% of the original quality.

Into the Archive
After scanning in all eleven pages of the
excellent New Yorker article “Outsourc-
ing Torture” by Jane Mayer, and convert-
ing it to archive.pdf, the following call to
today’s script magsafe bundles it off into
the archive:

magsafe -m "New Yorker" -a U

"Jane Mayer"
-t "Outsourcing Torture"
-i 2005/02/14 -p 106 -d U

archive.pdf

This creates a record with the title of the
publication (“New Yorker”), a document
title (“Outsourcing Torture”), the issue
(“2005/02/14”), and the starting page
(106).

The data are stored in a genuine data-
base, which supports SQL queries. We
have used the database engine, SQLite,
in this Perl column before. If you check
out the “Installation” section, you will
see that you simply need a few CPAN
modules and the script will handle
everything else.

The script does not copy the PDF
document, archive.pdf, to the database,
but to a directory, where the documents

N
o matter whether it is an enter-
taining article in your local
newspaper or an excellent politi-

cal piece in the New Yorker, both make a
good read on a rainy day, and you might
like to put them in an archive for easier
retrieval.

Unfortunately, these gems of journal-
ism are not available online, since their
publishers haven’t taken the plunge into
the Web yet. Not a good thing, as
printed media take up a lot of room. But
do you really want to rent a shed or fill
up your bookshelves with row after row
of folders?

Scanning and Compressing
The alternative is to digitize the interest-
ing bits using a scanner, and to store
them on disk as PDF files. To allow the
archivist to keep track of the continually
growing collection, today’s Perl script,
magsafe, manages a database of scanned
media.

Perl: Archiving PDFsPROGRAMMING

72 ISSUE 55 JUNE 2005 W W W . L I N U X - M A G A Z I N E . C O M

This month you’ll learn how to place articles in a private PDF archive

and how to use a database to access those articles at a later time.

BY MICHAEL SCHILLI

Archiving and accessing PDFs

LIBRARIAN

w
w

w.photocase.de

are stored under numeric filenames
(000001, 000002, …). Feeding the New
Yorker article to a pristine database will
create a new document called “000001”,
holding the PDF data.

Our second record will be a piece in a
local newspaper, reporting on a brawl in
a London pub:

magsafe -m U

"Southwest London Inquirer"
-t "Pint Glasses Flying Low"
-i 2005/02 -p 4 -d U

archive.pdf

As you can see, there is no need to have
the author’s name; in fact, the authors of
some articles in the daily papers are
unknown.

If you call magsafe without specifying
any parameters, the script interactively
prompts you for the details:

$ magsafe
[1] New
[2] New Yorker
[3] Southwest London Inquirer
Magazine [1]>

As we have input two publications previ-
ously, magsafe has noted the newspaper
titles and now displays an enumerated
menu. To add a new magazine, simply
press 1 and enter the name of the publi-
cation:

Magazine [1]> 1
Enter Magazine Name []> The Sun
Document []> ...

magsafe copies the PDF document
specified by the -d option (or entered
interactively as just seen) into a hard-
coded directory, assigning a serial num-
ber to the individual documents
(000001, 000002, and so on) in the
process, and referencing the paths to
these files from the database.

Needle in a Haystack
A database gives you the advantage of
being able to search the data as you see
fit. For our newspaper database, which
we have stored in a file called
scanned_docs.dat, this is quite easy to
do with the sqlite3 command line tool
and a smattering of good old SQL:

$ sqlite3 scanned_docs.dat
sqlite> SELECT * from doc where

title like '%Pint%'
2|Pint Glasses Flying LowU
||2|4|2005/02
CTRL-D
$

Now you might rightly object that the
process is slightly inconvenient, so
magsafe gives you a simplified query
language.

If you use the -s parameter, you need
to specify a search string in the following
format:

"field:pattern field:U
pattern ..."

The following line searches for articles
with the word Pint in their titles:

$ magsafe -s title:Pint
"Pint Glasses Flying Low", U

Unknown, Southwest London U

Inquirer, 2005/02,
4, /DATA/DOCS/000002

Under the hood, magsafe generates an
SQL query from your input, after wrap-
ping the search string in percent charac-
ters. Let’s assume you are looking for
articles published in 2005, that is, with a
value of “2005” in the issue field. In this
case, you would enter:

magsafe -s issue:2005

You could additionally restrict the query
to articles from the “Southwest London
Inquirer”:

magsafe -s "issue:2005 U

mag:Southwest"

Abstract Database
We have seen the Class::DBI database
abstraction used by magsafe a few times
in this Perl column. Today, we are going
to make things even simpler. The Class::
DBI::Loader module farther simplifies
the class definitions for Class::DBI, by
analyzing the database table layout and
generating abstraction classes and their
relations by reference.

The magsafe listing shows how this is
implemented. The Getopt::Std module
parses the command line options that
magsafe understands. Line 29 looks for
-a, -m, -t, and so on. The colons in the
format string stipulate that a parameter
must follow each option marked in this
way. getopts stores the values in a hash,
%o, which is processed later.

Line 33 checks if the document direc-
tory exists (it can be empty), and is
writable. If not, the directory needs to be
created before the program is launched.

The db_init() function called in line
36 makes sure that users will not need to
concern themselves with the database
details. If the database does not exist,
db_init() uses a few lines of SQL, start-
ing in line 147, to create a new database
with two tables. Figure 2 shows you the
schema.

The doc table contains a line for each
document you save. The line includes
the title and author of the article, the
issue and page, and the name of the
publication from which the article was
taken. As most people do not read too
many different publications, but do so
regularly every month, it would be poor
database design to store the full title of
the publication in each line. Instead the
doc table has a mag field with a numeri-
cal ID that points to a line in the mag
table, which has the ID and the full
name of the publication.

The table definitions that follow as of
line 147 in magsafe, honor the SQL
standard, including the

mag INT REFERENCES mag,

line in the doc table, which looks slightly
unusual. This is a way of saying that the
mag column points to the mag table, and
of establishing the relationship between
the publication ID and title.

PROGRAMMINGPerl: Archiving PDFs

73ISSUE 55 JUNE 2005W W W . L I N U X - M A G A Z I N E . C O M

Figure 1: Digitizing an article with xsane.

are visible in Perl in the Scanned::DB
namespace.

After calling Class::DBI::Loader->
new(), the find_class() method fetches
the objects that represent the tables, as
seen in lines 50 and 52, providing the
table names as arguments. $docdb, an
object of the Scanned::DB::Doc type,
points to the doc document table, and
$magdb (Scanned::DB::Mag) points to
the publication table, mag.

To allow the objects to perform both
Class::DBI standard queries, and handle
more complicated WHERE conditions,
the additional_classes parameter in line

43 requests the Class::DBI::Abstract-
Search package.

The relationships flag in line 46 tells
Class::DBI::Loader to analyze the rela-
tionships between the doc and mag
tables and to link both of them. Thanks
to the REFERENCES condition in SQL, it
understands that the mag column in the
doc table is simply a foreign key, used to
perform a JOIN with the mag table.

Command-Line Controls
Starting in line 56, the script processes
command line parameters. If -s is not
set, the user is not searching for an exist-

The first two columns in both tables
are numerical Ids, which are tagged as
primary keys. The Class::DBI::Loader
class constructor called in line 40 needs
them to assign unique IDs to the objects
that make up the lines in the table.
Newly created rows are automatically
assigned new IDs by incrementing the
last used ID by one.

The following line

namespace => "Scanned::DB"

in the database loader constructor call
ensures that the table abstraction classes

Perl: Archiving PDFsPROGRAMMING

74 ISSUE 55 JUNE 2005 W W W . L I N U X - M A G A Z I N E . C O M

001 #!/usr/bin/perl -w

002 #############################

003 # magsafe - Archive

004 # magazine articles

005 # Mike Schilli, 2005

006 # (m@perlmeister.com)

007 #############################

008 use strict;

009

010 use DBI;

011 use Class::DBI::Loader;

012 use Sysadm::Install qw(:all);

013 use Getopt::Std;

014 use Text::Iconv;

015

016 my $DB_NAME =

017 "/DATA/scanned_docs.dat";

018 my $DSN =

019 "dbi:SQLite:$DB_NAME";

020 my $UTF8_TERM = 1;

021

022 my $cv =

023 Text::Iconv->new("Latin1",

024 "utf8");

025 $cv->raise_error(1);

026

027 my $DOC_DIR = "/DATA/DOCS";

028

029 getopts("a:m:t:i:p:d:s:",

030 \my %o);

031

032 die "$DOC_DIR not ready"

033 if !-d $DOC_DIR

034 or !-w $DOC_DIR;

035

036 db_init($DSN)

037 unless -e $DB_NAME;

038

039 my $loader =

040 Class::DBI::Loader->new(

041 dsn => $DSN,

042 namespace => "Scanned::DB",

043 additional_classes => qw(

044 Class::DBI::AbstractSearch

045),

046 relationships => 1,

047);

048

049 my $docdb =

050 $loader->find_class("doc");

051 my $magdb =

052 $loader->find_class("mag");

053

054 my @objs = ();

055

056 if (!exists $o{s}) {

057 my $mag =

058 mag_pick($magdb, $o{m});

059 my $doc = $o{d}

060 || ask "Document", "";

061 my $author = $o{a} || "";

062 my $title = $o{t}

063 || ask "Title", "";

064 my $page = $o{p}

065 || ask "Page", "";

066 my $issue = $o{i}

067 || ask "Issue", "";

068

069 my $id = $mag->add_to_docs(

070 {

071 map {

072 $UTF8_TERM

073 ? $_

074 : $cv->convert($_)

075 }

076 title => $title,

077 page => $page,

078 issue => $issue,

079 author => $author

080 }

081);

082

083 cp $doc, docpath($id);

084 exit 0;

085 }

086

087 my %search = ();

088

089 for (split ' ', $o{s}) {

090

091 my ($field, $expr) =

092 split /:/, $_;

093

094 if ($field eq "mag") {

095 my @mags =

096 $magdb->search_like(

097 name => "%$expr%");

098

099 $search{$field} =

Listing 1: magsafe

ing database entry, but would like to
enter a new row. Lines 59 through 67
accept values from various command
line options. If one or more options are
not set, the ask() function (injected by
the Sysadm::Install module) interac-
tively prompts the user for the missing
values. The author field is optional and
is not prompted for.

Selecting a publication is slightly more
complex and uses the mag_pick function
defined in line 169 ff. The retrieve_all()
method of the $magsdb database table
object reads all existing rows in the mag
table. The returned data objects provide

methods for accessing the individual
fields in the records: for example, $obj->
name() returns the name of the publica-
tion, which is stored in the name col-
umn of the mag table.

If $picked is not set, that is, the com-
mand line option for the publication
name is empty, line 179 uses the pick()
function (also from Sysadm::Install) to
give the user a menu based choice of
magazine names. If the user selects the
first entry, New, line 181 invalidates the
selection, and line 186 allows the user to
enter the name of a new publication,
which will be displayed in the selection

list next time. The find_or_create()
method then creates a new entry in the
mag table, or finds an existing magazine
entry.

The $mag variable in line 57 thus
represents a newly created or existing
magazine. As Class::DBI::Loader has
done a good job previously, and ana-
lyzed the relationships between the doc
and mag tables, thanks to the relation-
ships flags, line 69 can now simply call
$mag->add_to_docs() to add an article
to the doc table and allow its mag
column to point to a publication in the
mag table. The add_to_docs() method of

PROGRAMMINGPerl: Archiving PDFs

75ISSUE 55 JUNE 2005W W W . L I N U X - M A G A Z I N E . C O M

100 [map { $_->id() }

101 @mags];

102 } else {

103 $search{$field} =

104 "%$expr%";

105 }

106 }

107

108 @objs = $docdb->search_where(

109 \%search, { cmp => "like" }

110);

111

112 if (@objs) {

113 print join(", ",

114 '"' . $_->title() . '"',

115 $_->author()

116 || "Unknown",

117 $_->mag()->name(),

118 $_->issue(),

119 $_->page(),

120 docpath($_->docid())),

121 "\n"

122 for @objs;

123 } else {

124 print STDERR

125 "No entries\n";

126 }

127

128 #############################

129 sub docpath {

130 #############################

131 my ($id) = @_;

132

133 return sprintf "%s/%06d",

134 $DOC_DIR, $id;

135 }

136

137 #############################

138 sub db_init {

139 #############################

140 my ($dsn) = @_;

141

142 my $dbh =

143 DBI->connect($dsn, "",

144 "");

145

146 $dbh->do(q{

147 CREATE TABLE doc (

148 docid INTEGER

149 PRIMARY KEY,

150 title VARCHAR(255),

151 author VARCHAR(255),

152 mag INT REFERENCES

153 mag,

154 page INT,

155 issue VARCHAR(32)

156);

157 });

158

159 $dbh->do(q{

160 CREATE TABLE mag (

161 magid INTEGER

162 PRIMARY KEY,

163 name VARCHAR(255)

164);

165 });

166 }

167

168 #############################

169 sub mag_pick {

170 #############################

171 my ($magsdb, $picked) = @_;

172

173 my @mags =

174 map { $_->name() }

175 $magsdb->retrieve_all();

176

177 if (@mags and !$picked) {

178 $picked =

179 pick "Magazine",

180 ["New", @mags], 1;

181 undef $picked

182 if $picked eq "New";

183 }

184

185 if (!$picked) {

186 $picked = ask

187 "Enter Magazine Name",

188 "";

189 }

190

191 $picked = $UTF8_TERM

192 ? $picked

193 : $cv->convert($picked);

194

195 my $mag =

196 $magsdb->find_or_create(

197 { name => $picked });

198

199 return $mag;

200 }

Listing 1: magsafe

the mag table. This can return no maga-
zine objects, one, or multiple objects in
@mags. The id() method finds matching
magazine IDs, allowing line 99 to store a
tuple of

"mag" => [$id1, $id2, ...]

in the %search hash. $id1, $id2, and so
on are the numerical IDs for the maga-
zines that match the search request, and
the hash entry assigned to the key
"mag" points to an array which contains
these IDs as elements.

On the other hand, if a user searches
for any other column than mag, the else
branch in line 103 is enabled and the
search key is wrapped in percent signs
and assigned to the column name key in
the %search hash.

The content of the %search hash is
exactly what the search_where() method
expects; it is called in line 108 and
returns lines that match all the condi-
tions specified by the hash. As the com-
pare parameter, cmp, is set to "like" in
an additional options hash, search_
where() does not search for literal
matches, but for patterns with wildcards
given as %, compliant with the SQL
standard.

The print command in line 113 is
called for each object found, triggered by
the subsequent for @objs clause.

Non-Standard Characters
SQLite3 expects all strings in UTF-8. In
case you are storing foreign titles with
accented characters, providing them in
ISO 8859-1 won’t work. Many newer
Linux distributions have UTF-8 termi-
nals, whereas older distributions typi-
cally use ISO 8859-1. Check your LANG
environmental variable to find out: if
this is set to en_US.UTF-8, for example,
your terminal uses UTF-8.

If the $UTF8_TERM variable in line 20
is set to a valid value, the script will
interpret all user input as UTF-8 and not
attempt to convert. If $UTF8_TERM is 0,
magsafe will assume user input is ISO
8859-1 and convert everything to UTF-8
before placing input in the database.

If it needs to convert, magsafe will
resort to the CPAN Iconv module. Line
23 creates a Text::Iconv object to convert
from ISO-8859-1 to UTF-8. It additionally
calls raise_error() with a value of 1, to
force an exception in case an error

occurs. The convert() method converts
any strings passed to it from one encod-
ing type to the other. The Encode module
for those of you who have Perl 5.8.x or
later is a possible alternative.

Installation
The script needs the DBI, Class::DBI,
Class::DBI::SQLite, Class::DBI::Abstract-
Search, and DBD::SQLite modules for the
abstraction, all of which are available
from CPAN. Additionally, Text::Iconv and
Sysadm::Install are required.

If you prefer to use the sqlite3 com-
mand line client to mess around with the
SQL database manually, download the
source tarball from [4], build the source
code, and install from there.

Sqlite versions 1 or 2 will not work, as
DBD::SQLite is currently based on sqlite
3.x, which is not compatible with data-
bases built using other SQlite versions.

Caution: If you are using SQLite data-
bases for other applications with earlier
versions of the DBD::SQLite module and
want to go on using them, you will need
to convert to the new SQLite format
before upgrading:

sqlite OLD.DB .dump | U

sqlite3 NEW.DB

Once you install the latest version of the
DBD::SQLite module, you will not be
able to read databases created with
earlier versions.

The $DOC_DIR variable defines the
document directory in line 27 of the
magsafe script. Additionally, the variable
$DB_NAME in line 16 sets the name of
the SQLite database file. Its directory
should exist before you launch the
program and it must be writable.

Now, printed media aficionados can
scan interesting articles from publica-
tions they have read, and then put the
printed mags in the recycling bin. Just
think of what you can do with all the
space that saves you. ■

the magazine object is not explicitly
defined in magsafe. It is automatically
generated by the DBI::Class database
abstraction layer.

To copy the current PDF document to
the document directory, magsafe calls
the cp function from Sysadm::Install in
line 83. The docpath() function defined
in line 129 returns the complete future
path of the file. To do so, it simply con-
verts the ID passed to it into a six-digit
integer padded with zeros and prepends
the document directory path.

Simpler than SQL
In case of a search request, line 89
iterates over the column:pattern pairs,
which are provided by the -s Option and
separated by blanks. Line 92 then sepa-
rates the column name from the search
key. If the column name is mag, line 96
first searches for a matching magazine
by wrapping the search key in percent-
age characters and calls search_like() on

Perl: Archiving PDFsPROGRAMMING

76 ISSUE 55 JUNE 2005 W W W . L I N U X - M A G A Z I N E . C O M

Figure 2: Layout of the SQLite database.

[1] Listing for this article:
http://www.linux-magazine.com/
Magazine/Downloads/55/Perl

[2] http://www.sane-project.org

[3] PDF Hacks, by Sid Steward,
O’Reilly 2004

[4] SQLite Home Page,
http://www.sqlite.org

INFO

This article is intended to demonstrate
techniques related to storing and retriev-
ing PDFs. The assumption is that you
own a copy of the magazine you are
scanning. The article also assumes that
the PDF is made for personal use and
will not be distributed. Laws related to
scanning copyrighted material are com-
plex and vary from country to country.
For instance, some legal systems place a
limitation on the number or articles you
can copy from a single issue. Before you
employ these techniques with copy-
righted material, you should investigate
these copyright issues as they apply to
your situation.

Copyright Matters

