
70

High-volume downloads can
make simultaneous interactive
connections practically unus-

able. Just like in the bad old days of mo-
dems, users press keys and then wait for
seconds for the server to finally echo the
character on screen.

TCP/ IP needs enough free capacity in
both directions. No matter whether you
are uploading or downloading, packets
still travel in both directions. The device
at the receiving end of the download is
expected to acknowledge the receipt of
every packet it receives, and obviously
the receipt travels in the upload direction
towards the source.

Traffic Shaping made easy
To use the bandwidth of a broadband
connection more efficiently, it is impor-
tant to have more granular control over
the packets entering or leaving your ma-
chine. Linux has queuing management

facilities to handle this, and they provide
a wide variety of traffic shaping ap-
proaches based on various algorithms.
Traffic shaping is a technique for control-
ling incoming and outgoing network
traffic to make optimum use of line ca-
pacity. Needless to say, the system is as
complicated as it sounds (see [1].) The
Trickle tool [2] solves this problem by
giving users a simple command with just
a few options. Trickle is normally quite
easy to build; it requires only Libevent
[3] and a few other standard libraries.

Non-Privileged
Trickle does not even need administra-
tive privileges to control traffic. Nor-
mally, Glibc provides applications with a
number of network functions that allow
them to establish Internet connections,
transfer files, and so on. When Trickle
launches, it uses the LD_PRELOAD envi-
ronment variable to load its own dy-

namic library, which includes network
functions. They work just like the ori-
ginals, but additionally record traffic
flows. Trickle works with most pro-
grams, but there are a few exceptions.
If you have difficulty getting Trickle to
work with your favorite application,
you might like to check the notes in the
“Restrictions” box.

Some applications do not use the
mechanism by default. To subject a pro-
gram to bandwidth control, you need to
launch the program with the trickle com-
mand. The -d switch lets you specify a
limit for the download rate:

trickle -d 50 U
ftp ftp.redhat.com

This tells Trickle to ensure that the
download stream FTP connection will
not consume more than 50 Kbps of
bandwidth on average. The -u option
does the same for the upload stream.
Other FTP programs running at the same

Accelerating downloads with Trickle

TRAFFIC
CONTROL

Figure 1: Without Trickle control, the FTP

download consumes the total available band-

width. Setting a limit keeps enough capacity

for other network applications.

w
w

w
.sxc.h

u

Is your Internet connection groaning under the load of too many

simultaneous downloads? If so, try Trickle, a simple application that

gives you more granular control over network traffic.

BY OLIVER FROMMEL

Traffic shaping with TrickleSYSADMIN

70 ISSUE 62 JANUARY 2006 W W W. L I N U X- M A G A Z I N E . C O M

71

time are not affected by Trickle and
could continue to hog the wire. To pro-
vide more sensible controls, you need to
allow trickle to control any programs
that send or receive Internet data. The
Trickle daemon, trickled, takes care of
this by logging all Trickle connections
and controlling the total bandwidth con-
sumption.

Global Controls
Again, the daemon supports the two
simple parameters that we just looked
at, -d and -u, but in this case they apply
to the total bandwidth:

trickled -d 50 -u 5 -f -N 5

This command sets the download rate to
50 Kbps and the upload rate to 5 Kbps.
The -f parameter tells the daemon to run
in the foreground. -N 5 tells the daemon
to output statistics every 5 seconds. If
you omit the -d parameter, Trickle will
set the upload and download rates to 10
Kbps. You can store permanent settings
in the /etc/trickled.conf configuration
file, or set the -c flag and specify a file-
name.

Trickle programs talk to the daemon
when launched (normally via a Unix
socket called /tmp/.trickled.sock), and
control the client programs based on
your rules. If the server connection is in-
terrupted, Trickle keeps on running, but
it will not honor the set limits. If the
server is running with a download limit
of 10 Kbps, entering trickle wget http://

www.w3.org will keep to the limit. But if
you quit the server while the download
is running, the download rate will in-
crease.

Smoothing
You can use the /etc/trickled.conf config-
uration file to define priorities for indi-
vidual services. Lower values represent
higher priorities. Internally, Trickle ma-
nipulates the packet order in a queue.
This approach means that you can
achieve fairly good download speeds
and still use an interactive ssh session. A
simple example of a configuration file
follows:

[ssh]
Priority = 1
[www]
Priority = 8

The documentation also recommends
the Time-Smoothing and Length-Smooth-
ing parameters to avoid transfer rate
fluctuation. In contrast to the command
line options, -d and -l, you can set the
parameters in the configuration file indi-
vidually for each service (SSH, FTP,
WWW, …):

[ssh]
Priority = 1
Time-Smoothing = 0.1
Length-Smoothing = 2
[www]
Priority = 8
Time-Smoothing = 5
Length-Smoothing = 20

These values define the time and length
normalization that Trickle applies to a
program that it is controlling. Larger val-
ues are recommended for high-volume
transfers, whereas interactive applica-
tions should use smaller values. Neither
of these values had much effect in our
tests, but you might like to do some ex-
perimenting of your own.

Limits
There are limits to what a system of this
kind can do. No matter whether it runs
in kernel or user space, buffers – which
are bound to hold a few packets – and
the dynamic nature of today’s networks
set natural boundaries for traffic shap-
ing. Trickle calculates the rates over a
specific period of time. As the rate starts

with a low value and increases over
time, the tool might overshoot the mark
and climb way above the value you are
aiming for.

-w specifies the number of bytes in
which Trickle should attempt to avoid
burstiness, although it must be said that
this setting had very little effect in our
testing. The difference to the default set-
ting of 512 bytes was hardly noticeable.
This said, Trickle still does a good job
without fine tuning.

Good for Home Use
Trickle is mainly designed to give indi-
vidual users more control over the traffic
flows generated or received by individ-
ual applications. Multi-user use is con-
ceivable, but it would involve writing
wrapper scripts as a catch-all for the ap-
plications involved, so a QDisc-based so-
lution might be preferable (see [1]).
Trickle also relies on user cooperation:
each program has to be launched via the
trickle binary.

Trickle can only handle TCP stream
connections, which are typical of most
high-volume services. Most people will
be able to live with the fact that Trickle
can’t handle DNS traffic, for example.
The Trickle traffic shaping tool is defi-
nitely a good solution for readers who
need a spontaneous and simple ap-
proach for maintaining an interactive
session while transferring high volumes
of data. ■

[1] Advanced Routing and Traffic Control
Howto: http:// lartc. org

[2] Trickle: http:// monkey. org/ ~marius/
pages/ ?page=trickle

[3] Libevent: http:// www. monkey. org/
~provos/ libevent

INFO

Because the LD_PRELOAD mechanism
uses dynamic libraries, Trickle will not
work with so-called static binaries that
do not use Glibc. The ldd command will
tell you what kind of program you are
asking Trickle to control; at the same
time, ldd gives you a list of dynamic
libraries:

ldd /usr/bin/wget | grep libc.so

libc.so.6 => U

/lib/libc.so.6 (0x00add000)

If ldd does not give you any output, you
can assume that the test candidate is a
static program. You can verify this by
giving the file /usr/bin/wget command.

Additionally, Trickle can’t handle SUID
programs, which disable the LD_PRE-
LOAD mechanism for security reasons.

Restrictions

For several years
Oliver was a sysop
and programmer at
Ars Electronica Cen-
ter in Linz/Austria.

After finishing his
studies in Philoso-
phy, Linguistics and
Computer Science he became an
editor for the Bavarian Broadcasting
Corporation. Today he is head of the
Editorial Competence Center for
Software and Programming at Linux
New Media AG.

T
H

E
 A

U
T

H
O

R

SYSADMINTraffic shaping with Trickle

71ISSUE 62 JANUARY 2006W W W. L I N U X- M A G A Z I N E . C O M

