
30

Novell views AppArmor [1] as an
easily configurable but effective
protection system for Linux. Ac-

cording to the vendor, AppArmor com-
petes with SE Linux, which has been
part of the Suse distribution for quite a
while now, although lacking the policies
needed to run it. Whereas SE Linux is
comparatively difficult to configure, but
implements comprehensive MACs (Man-
datory Access Control), AppArmor fo-
cuses on restricting the scope of individ-
ual applications.

The Task
It is an unfortunate fact that many pro-
grams suffer from bugs, and web appli-
cations are particularly badly hit. Most
software is not coded by security special-
ists, though it may be publicly accessible
via the web, and this makes it an easy
target for attackers. If an attacker finds a
programming error in an application,
they can typically exploit the error, thus
gaining access to the target system.

Even if the intruder only compromises
a standard user account, this is still dan-
gerous for the victim. The account gives
the hacker direct access to locally in-

stalled tools. And a single vulnerability
in a Set UID root program is all it takes
for the attacker to take over the reins.
Traditionally, admins and web masters
have had no alternative but to keep their
systems up-to-date and to remove any
ballast, that is, to deploy only the soft-
ware they really need. But none of this
can protect you against zero day exploits
– attacks that target previously unknown
security holes.

How it Works
AppArmor is designed to help admins
break out of the trap. The system moni-

tors the way processes access files.
AppArmor distinguishes between read
and write access and also monitors the
use of root privileges. Depending on
your kernel, Linux can distinguish up to
29 capabilities (see man 7 capabilities).
For example, CAP_KILL refers to root’s
ability to terminate processes, and CAP_
NET_RAW allows root to create arbitrary
network packages. The ping command
needs this ability, for example.

The idea of controlling access and
 actions based on the program rather
than the owner and/ or user is not new.
On the free BSD systems and Linux,

When an attacker succeeds in infecting a victim’s system,

the attacker inherits the victim’s privileges. App Armor

beats the attack by reducing the potential victim’s privi-

leges to a minimum. BY RALF SPENNEBERG

AppArmor started out its career as a
commercial product by Immunix,
 although it was known as Subdomain
at the time. Novell acquired Immunix in
mid 2005, renamed Subdomain to
 AppArmor, and licensed the code under
the GPL early in 2006. Immunix was well
known as a vendor of security solutions,
most specifically due to the Stackguard
compiler, a modified GCC that protects
applications against variations on the
theme of buffer overflow attacks.

Immunix was also heavily involved in
the development of the LSM interface
(Linux Security Modules) for kernel 2.6.
Besides AppArmor, a number of security
systems, such as LIDS (Linux Intrusion
Detection System) and the competitor
product SELinux, use the LSM interface
to inject controls where they are needed
in the kernel. Thanks to LSM, patches are
not required, however, the LSM architec-
ture is a subject of discussion for some
projects.

Immunix

PROTECTIVE
ARMOR

Shutting out intruders with AppArmor

PROTECTIVE
ARMOR

AppArmorCOVER STORY

30 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

Niels Provos’ Systrace [7] implements
this principle, for example. But while
Systrace monitors system calls – as you
would expect from the name – App-
Armor uses the LSM Hooks (see the
“Immunix” box).

Deploying AppArmor on
Linux
Novell includes AppArmor with the
commercial Suse Linux 10.0 and SLES 9
SP3 distributions (Suse Linux Enterprise
Server 9, Service Pack 3). The GPL vari-
ant is included with Open Suse 10.1. You
can install AppArmor on Open Suse
10.0, although this requires a time-con-
suming kernel patch. According to the
mailing lists [2], you can expect Ubuntu
and Fedora to support AppArmor in the
future. This said, the GUI requires Yast 2
at this time of writing.

Novell has a number of packages up
for grabs on Novell Forge [3]. The RPMs
for the alpha version of Open Suse 10.1
will work on Open Suse 10.0. A kernel
with AppArmor support is additionally
required. The best approach is to use an

original package from the kernel reposi-
tory [4], for example, Linux 2.6.15, in
combination with the aa_2.0-2.6.15.
patch and aa_namespace_sem-2.6.15.
patch [5] kernel patches. When you run
make oldconfig to configure, you can
typically just press [Enter] to accept the
default values when prompted. The indi-
vidual steps are shown in Listing 1.

In later patches, Novell will be renam-
ing the kernel structure in Security FS to
/sys/kernel/security/apparmor. The Se-
curity FS has been part of the standard
kernel since Linux 2.6.14.

Starting on Time
The userspace AppArmor component
launches the system service and assigns
a policy. The init script has kept the
older Subdomain name: /etc/init.d/sub-
domain start loads and enables the
AppArmor kernel module. To allow the
module to monitor an application, it has
to be enabled before the application you
want it to protect. This is why it makes
sense to launch AppArmor at boot time.
Also, the application needs a profile file

below /etc/subdomain.d (future distribu-
tions will use /etc/apparmor.d).

Novell provides profiles for a whole
bunch of critical commands, including
servers such as Apache (in Prefork
mode) and OpenSSH, for S-Bit tools

01 tar xjvf linux-2.6.15.tar.bz2

02 cd linux-2.6.15

03 patch -p1<../aa_2.0-2.6.15.
patch

04 patch -p1<..
/aa_namespace_sem-2.6.15.
patch

05 make oldconfig

06 make bzImage

07 make modules

08 make modules_install

09 make install

10 rmdir /subdomain

11 ln -s /sys/kernel/security
/subdomain /subdomain

Listing 1: Setup Steps

COVER STORYAppArmor

such as ping and man, network-capable
clients such as Firefox and Real Player,
viewers like Acrobat Reader, and even
for the Klogd and Syslogd protocol ser-
vices.

New Profiles
If you need to create additional profiles
for your applications, the Yast-based
profile wizard can help you set them up.
The profile wizard just needs to know
for which program you will be creating
a profile at first. The user then launches
the program, and runs the program in
the normal way.

It is important to use all the applica-
tion’s functions at this stage. Make sure
that attacks are impossible during the
learning phase: AppArmor will later
allow all the features that the application
uses now. AppArmor learns the applica-
tion’s legitimate functions during this
phase.

After quitting the application, the next
step is to analyze the recorded events
using the profile wizard. The wizard
suggests an action in each case. If the
monitored program calls another pro-
gram, the profile wizard gives you the
following choices: Inherit means that the
same restrictions apply to the new appli-
cation kdialog as to the application you
are analyzing. Profile means that the
program has its own profile. Unconfined
means that AppArmor will not monitor
the new process, and Deny stops the ap-
plication from launching.

To facilitate the process of creating
and managing profiles, AppArmor uses
include files. The files are implemented
as abstraction libraries and contain rules
for standard legacy operations. For
example, #include <abstractions/kde>
allows access to the KDE configuration
files and functions. Other profiles allow
users to launch Bash or name resolution.

After successfully completing the wiz-
ard, it makes sense to relaunch the ap-
plication and test how it performs under
the watchful eye of AppArmor. If you
notice that some functions are not work-
ing as advertised, you may need to rerun
the wizard. In this case, the wizard reads
the existing profile and updates the pro-
file with your changes.

Listing 2 gives you a typical AppArmor
profile for Kpdf. After the Vim comments
(Suse provides a syntax highlighting
module for Vim), the profile starts with
the path to Kpdf; this specifies which
program the policy governs.
flags=(complain) switches the profile to
complain mode, also known as learning
mode. In this mode, AppArmor will
warn you about infringements against
the policy but without preventing the
events from taking place. Toggling to
flags=(enforce) tells AppArmor to re-
strict Kpdf’s abilities.

Lines 4 through 10 reference a number
of include files, and Lines 12 through 18
list the paths to which the PDF viewer is
allowed access. An r following the path
and file names refers to read access,

whereas rw allows both read and write
access.

Web Servers
AppArmor is particularly useful on web
servers. In contrast to popular Manda-
tory Access Systems such as LIDS, GR
Security, RSBAC, or SE Linux, AppArmor
can monitor virtual hosts with different
profiles on a web server. The Apache
web server can change profiles depend-
ing on the current directory. Novell re-
fers to this as the change_hat function –
in what may be a humorous sideswipe
at their competitor's red headgear.

But without some help from the
Apache, AppArmor is not capable of as-
certaining web server state. Novell pro-
vides a mod_change_hat module to han-
dle this (the name will be changing to
mod_apparmor in future). AppArmor al-
lows programs to change their security
context, however, the Apache web server
is the only program to have implemented
this feature as of this writing. An appli-

Figure 1: Squidfire parsing the access attempts logged by Squid. To restrict access to logfiles

to this one web application, Apache runs mod_change_hat to enable AppArmor support. In

this way, the security system knows which web application is currently active.

01 # vim:syntax=subdomain

02 # Last Modified: Sun Jan 22
10:16:55 2006

03 /opt/kde3/bin/kpdf
flags=(complain) {

04 #include <abstractions/
authentication>

05 #include <abstractions/base>

06 #include <abstractions/bash>

07 #include <abstractions/
gnome>

08 #include <abstractions/kde>

09 #include <abstractions/
nameservice>

10 #include <abstractions/
user-write>

11

12 / r,

13 /etc r,

14 /etc/X11/.kstylerc.lock rw,

15 /etc/X11/.qt_plugins_3.3rc.
lock rw,

16 /etc/X11/.qtrc.lock rw,

17 /etc/exports r,

18 /etc/rpc r,

19 <I>[...]<I>

Listing 2: Kpdf Profile
(Excerpt)

AppArmorCOVER STORY

32 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

cation’s main profile can have an arbi-
trary number of subprofiles (so-called
hats) to support this. The hierarchy is re-
stricted to one layer: subprofiles are not
allowed to contain further subprofiles.

Changing Hats
Yast has GUI-based support for subpro-
file management. The command-line
counterpart is more powerful, but Yast
configuration is simpler. The following
sections use the Squidfire web applica-
tion (Figures 1 and [6]) to describe the
Yast variant. Squidfire is a PHP script
that makes Squid logfiles searchable.
The AppArmor profile provided for this
task, usr.sbin.httpd2-prefork, denies
Apache, and thus Squidfire, all access to
the logfiles, as the following /var/log/
audit/audit.log message confirms:

type=APPARMOR msg=auditU
(1143872666.069:205): U
REJECTING r access to U
/var/log/squid (httpd2-preforkU
(14820) profile /usr/sbinU
/httpd2-prefork active U
DEFAULT_URI)

We need a subpro-
file to give Squid-
fire access. At the
same time, this
subprofile will
restrict this access
to the Squid log-
files only. This
precaution will
prevent cunning
Squidfire users
from running the
evaluation tool
against non-Squid
files.

Again, the Yast
profile wizard will handle the subprofile
configuration. When you run the wizard,
select Apache as the application. This
tells AppArmor to allow all actions for
this process and to log these actions for
later analysis. After working with the ap-
plication in your browser for a few min-
utes, click the Scan system log for
AppArmor events button in the profile
wizard (Figure 2) to complete the train-
ing phase. If you are training a change-
hat-capable application, the profile wiz-

ard will suggest that you create a new
subprofile (hat).

Strict Limits
Take care when responding to the profile
wizard’s prompts, particularly if the
main application calls external pro-
grams. It makes sense to let these tools
inherit the profile from the calling appli-
cation.

When adding imates and CSS files, the
Apache default profile is a sensible

Figure 2: Click on Scan system log for AppArmor events, and the

wizard will make a suggestion for the profile.

COVER STORYAppArmor

33ISSUE 69 AUGUST 2006W W W. L I N U X- M A G A Z I N E . C O M

choice. After asking you a few questions,
the profile wizard goes on to create a
subprofile in usr.sbin.httpd2-prefork
(Listing 3 shows an excerpt).

By default, the URI is used to distin-
guish between the various Apache sub-
profiles within the profile (see Line 2 of
Listing 3). This example allows the
/squid/index.php web application to use
Bash and read a number of system files.
Listing 3 also uses the Squidfire compo-
nents (Lines 11 through 15), and finally
the listing evaluates the Squid and
Apache access logs files (Lines 18 and
20).

On closer inspection, the subprofile
actually emphasizes how dangerous
some of the application’s actions
really are. The application obviously
uses files with predictable names below
/tmp (Line 16), and it runs external Shell
commands (See the reference to Bash in
Line 6. You'll also find the tail command
in Line 17.)

Distinguishing Directories
The mod_change_hat module lets you
organize subprofiles for virtual hosts via
the Location, and Directory directives.
Administrators can tell the module
which approach they prefer using the
ImmDefaultHatName and ImmHatName
directives.

The Imm prefix is still reminiscent of
AppArmor’s Immunix roots. Actually,
the module has been renamed to mod_
apparmor in later releases, and the key-
words are now AAHatName and AA-
DefaultHatName.

ImmDefaultHatName (or AADefault-
HatName) selects a default subprofile for
each virtual server. Additionally, subpro-
files can be assigned to individual areas
using the Directory or Location direc-
tives.

The following lines in the Apache con-
figuration would thus assign a hat to the
Squidfire web application:

<Directory U
"/srv/www/htdocs/squid">
 ImmHatName squidfire
</Directory>

You would need to call the subprofile
^squidfire rather than ^squid/index.php
(Line 2 in Listing 3).

AppArmor gives system administrators
a new approach to server security, espe-
cially in shared hosting environments
where multiple customers share a web
server.

Assigning a strict hat to each virtual
host, and restricting the hat’s access
to files belonging to just one customer,
would mitigate the danger of security
holes in one customer’s web application
endangering other customers. This
said, it would be a good idea to manu-
ally check the policies for this, or to
create them manually from scratch, in-
stead of relying on complain mode – but
this should not be too difficult for most
admins.

Conclusions
AppArmor locks critical applications
away in a sandbox, restricting access to

specific files, and limiting the system to
executing specific commands.

If the application turns out to have a
vulnerability that allows the attacker ac-
cess to a shell or lets the attacker run
commands with the victim’s credentials,
AppArmor steps in. The application is
not allowed out of jail. Although the
practical protection provided by a
tool like AppArmor does not remove the
vulnerability, the attacker will not be
able to exploit the security hole to gain
control of the system.

This principle protects a machine
against the effect of zero-day exploits,
and this makes AppArmor especially
useful for programs that are accessible
over networks, or programs that have to
process data from untrusted sources
(emails, images, video clips, office docu-
ments).

Changehat-aware applications can
even handle state at runtime, applying
different subprofiles as the situation dic-
tates. This adds the ability to define pro-
files for specific web applications on
web servers, applying specific rules
based on the URI, virtual host, or direc-
tory path.

AppArmor offers a practical approach
to Linux application security. The
AppArmor alternative is an efficient op-
tion for users who don't want to contend
with the additional complexity of secu-
rity systems such as SELinux. For more
on the relative merits of AppArmor and
SELinux, see the AppArmor vs. SELinux
comparison later in this issue. ■

[1] AppArmor:
http:// www. opensuse. org/ AppArmor

[2] AppArmor mailing list:
http:// forge. novell. com/ mailman/
listinfo/ apparmor-general

[3] AppArmor RPMs on Novell Forge:
http:// forge. novell. com/ modules/
xfmod/ project/ ?apparmor

[4] Kernel repository:
http:// www. kernel. org

[5] AppArmor kernel patches from the
January snapshot:
http:// forgeftp. novell. com/ apparmor/
Development%20-%20January
%20Snapshot/

[6] Squidfire:
http:// squidfire. sourceforge. net

[7] Systrace: http:// www. systrace. org

INFO

01 <I>[...]<I>

02 ̂/squid/index.php {

03 #include <abstractions/
bash>

04 #include <abstractions/
nameservice>

05

06 /bin/bash ixr,

07 /dev/tty rw,

08 /etc/ld.so.cache r,

09 /lib/ld-2.3.90.so ixr,

10 /lib/lib*so* r,

11 /srv/www/htdocs/squid/
cache.inc.php r,

12 /srv/www/htdocs/squid/

config.inc.php r,

13 /srv/www/htdocs/squid/
default_config.inc.php r,

14 /srv/www/htdocs/squid/
index.php r,

15 /srv/www/htdocs/squid/
parse_squid_row.inc.php r,

16 /tmp/access.log_1.3.0.inc
r,

17 /usr/bin/tail ixr,

18 /var/log/apache2/access_log
w,

19 /var/log/squid r,

20 /var/log/squid/access.log r,

21 }

Listing 3: Apache Subprofile

AppArmorCOVER STORY

34 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

