
32

Para-virtualization systems such
as Xen inhabit a popular corner
of the virtualization landscape,

but other technologies are also emerg-
ing. The Linux-VServer project repre-
sents a different approach to virtualiza-
tion.

VServer [1] and similar projects use a
technique known as kernel-level isola-
tion. Kernel-level isolation provides the
virtual system with an isolated share of
resources on the physical system. Other
virtualization schemes typically require
a separate kernel and separate memory
and disk space for each virutal system.
With VServer, on the other hand, the vir-
tualization occurs at the interface of the
virtual process with the host kernel. All
virtual systems share the same kernel,

and virtual processes actually run as
 regular processes on the host.

From a security viewpoint, VServer is
similar to a jail mechanism. Processes
within the virtual environment are iso-
lated from the rest of the system, so that
even if an intruder exploits a vulnerabil-
ity to gain access to the virtual machine,
the intruder will not be able to break out
of the “jail” created by the system level
isolation.

The philosophy behind VServer is to
offer a system that makes maximum use
of host resources and therefore requires
minimal overhead for managing the vir-
tual environment. VServer and other
kernel isolation systems offer high per-
formance and scale well for increased
numbers of virtual units.

Because of its high efficiency, scalabil-
ity, and built-in jail-like security, VServer
is often used for web hosting services,
although the benefits of VServer also
lead to many uses on the corporate LAN.
This article describes how to get started
setting up a VServer system. You’ll also
learn about an alternative virtualization
solution similar to VServer called
OpenVZ [2].

Virtual Servants
VServer operates as part of the Linux
kernel. Unfortunately, the benefits of
VServer are not currently available with
the plain vanilla kernel on Linux. Al-
though the standard kernel has all the
ingredients required to support partition-
ing, you will need to add a number of
patches from the Linux VServer project.

Most distributions provide special ker-
nel packages with the required patches,

High performance virtualization with VServer

LOW PRICE
The VServer project offers a secure and highly efficient virtualization

alternative. BY WILHELM MEIER, TORSTEN KOCKLER

VServerCOVER STORY

32 ISSUE 70 SEPTEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

33

removing the need for users to patch the
kernel themselves. If you prefer to avoid
recompiling the new kernel, pre-built
kernels are available for Linux VServer
[1] and OpenVZ [2] on the project
homepages.

Gentoo as the Host
The examples in this article are based
on a Gentoo host system. Although the
details may differ for other Linux distri-
butions, the concepts are similar.

Gentoo’s vserver-sources package has
the patched kernel sources and
util-vserver, the userland tool suite for
the Gentoo distribution. Note that there
is another package with a misleadingly
similar name: vserver-utils [5]. This
package is still under heavy develop-
ment and will only work with developer
versions of Linux VServer.

To install the VServer packages on
Gentoo, just enter the following com-
mands

emerge vserver-sources U
util-vserver
rc-update add vserver default

The last command launches the virtual
servers when you reboot. You can then
go on to build the new VServer kernel
for the host, using genkernel, for exam-
ple. Then modify the boot loader config-
uration and reboot. Before you do so,
make sure you introduce the new kernel
to the VServer helper script by entering
echo 'kernel.vshelper=/usr/lib/
util-vserver/vshelper' >> /etc/sysctl.
conf.

This script is used to halt and reboot a
virtual server: after all, you only want to

stop or start one virtual server while the
host system keeps on running.

Gentoo as a Guest
It is easy to set up a VServer environ-
ment. Start by specifying the name and
context ID – these values have to be
unique, of course. Then specify a net-
work interface for the virtual server,
along with the alias name and static IP
address. The following command creates
the configuration for an instance called
VS01 in /etc/vservers/vs01. At the same
time, it creates a minimal directory tree
below /vservers/vs01; the installation
will overwrite the skeleton tree later.
vserver vs01 build -m skeleton --hostname
vs01 --initstyle plain --context 1001 --inter-
face vs01=eth1:192.168.39.11/24.

We can now carry on with the installa-
tion of the Gentoo guest system below
/vservers/vs01 in the usual way and un-
pack a stage3 archive, along with a por-
tage snapshot. If you are using a Gentoo
host, like we are, you can ignore the bit
with the portage snapshot and use a
read-only bind mount to let the guest
access the portage filesystem in the
installation phase.

mount /usr/portage U
/vservers/vs01/usr/portage -o U
bind,ro
mount /usr/portage/distfiles U
/vservers/vs01/usr/portageU
/distfiles -o bind,rw

BME Extensions
It is quite common to want to give all or
a group of virtual servers shared access
to a specific section of the filesystem.
This is what bind mounts are used for in

Linux. What this does is to mount a sub-
tree of the filesystem at a different posi-
tion. If you want to restrict this to read-
only access, you will encounter one of
Linux’s less memorable features: the ro
flag in combination with the bind option
is silently ignored by the mount com-
mand. You would expect an error mes-
sage here that the mount options for the
source directory will apply.

In the virtual server’s chroot() envi-
ronment, now change the profile to
vserver:

(vs01 chroot) gs / # rm U
/etc/make.profile
(vs01 chroot) gs / # ln -s
/usr/portage/profilesU
/default-linux/x86/2005.1U
/vserver /etc/make.profile

To complete this stage of the configura-
tion, install the Syslog NG and Openssh
packages and assign them to the default
run-level. Of course, you won’t need to
build a kernel or install the boot loader
for the virtual server. Instead just replace
the normal boot scripts with the scripts
from the baselayout-vserver package (see
the box titled “Gentoo Baselayout
VServer”).

It is important to swap these packages,
as virtual servers are not allowed to
access devices directly, and this makes
some actions, such as loading modules,
meaningless to the virtual server. The
same principle should apply to OpenVZ,
however, some modifications are
required in this case [4].

At this point you will also need to
change the Syslog NG configuration (see
Listing 2), as access to /proc/kmsg is im-
possible in a VServer environment. The
VServer patches prevent the opening of
this pseudofile and also block /proc/
uptime.

01 (vs01 chroot) gs / # emerge baselayout-vserver

02 (vs01 chroot) gs init.d # ls -l

03 total 84

04 -rwxr-xr-x 1 root root 2871 Jan 16 14:48 bootmisc

05 lrwxrwxrwx 1 root root 5 Jan 16 14:48 checkfs -> dummy

06 lrwxrwxrwx 1 root root 5 Jan 16 14:48 checkroot -> dummy

07 lrwxrwxrwx 1 root root 5 Jan 16 14:48 clock -> dummy

08 lrwxrwxrwx 1 root root 5 Jan 16 14:48 consolefont -> dummy

09 ...

10 ...

11 lrwxrwxrwx 1 root root 5 Jan 16 14:48 urandom -> dummy

Listing 1: VServer-Baselayout

01 options {chain_hostnames(on);

02 sync(0);

03 stats(43200);};

04 source src { unix-stream("/
dev/log"); internal();};

05 destination server { udp("192.
168.39.10",port(514)); };

06 log { source(src);
destination(server); };

Listing 2: syslog-ng.conf

COVER STORYVServer

33ISSUE 70 SEPTEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

Before leaving the chroot() environ-
ment, don’t forget to modify the content
of your /etc/conf.d/hostname and /etc/
conf.d/domainname files.

Time to launch the new server, by en-
tering vserver vs01 start. The border be-
tween the host system, that is context 0,
and the VServers is semi-permeable. In
other words, you can enter the virtual
servers without authenticating, although
this does not apply in the opposite direc-
tion.

Checking the process list tells shows
there are quite a few differences between
the virtual world and a native environ-
ment. So what exactly happens when
you launch the VServer?

Namespaces
First of all, the vnamespace tool sets up a
new Linux namespace for processes by
calling clone() with the CLONE_NEWNS
flag. A namespace is a process-specific
view of the filesystem tree. If you run
mount in the namespace for process A,
this will not be visible to process B in
another namespace. This explains why
mounts for virtual servers do not affect
the host system’s namespace. Addition-
ally, the VServer root filesystem for the
new namespace is recursively bind
mounted as /, making it impossible to
break out of the chroot jail. An attacker
who broke out of the jail would end up
on the VServer filesystem.

Following this, aliases are set up for
the network interfaces. The chbind tool
binds the other processes to the VServer
IP address.

The interface configuration for the
VServer is located below /etc/vservers/

vs01/interfaces/0/. If the virtual server
has multiple interfaces, you can add
more directories /etc/vservers/vs01/inter-
faces/[1-9] and copy the files.

The next step is to mount the required
directories in the namespace. The root
directory comes first; it is specified as a
link in /etc/vservers/vs01/vdir, followed
by the mounts in /etc/vservers/vs01/
fstab. You will need entries for /proc and
/dev/pts as a minimum. If you also want
to mount the host system’s portage tree
at runtime, you can use the fstab in List-
ing 3 to do so.

Exercise caution if the VServer is un-
trusted. Although checksumming will
protect you against files being replaced,
the guest system will be able to inject
data into the host and other VServers in
this configuration.

Finally, enter vcontext to define the
process context for the first process on
the VServers, and chbind to restrict bind-
ing to the virtual server’s IP addresses.
Only set scheduling parameters and re-
source limits if the administrator decides
to use them. For a Gentoo VS, the first
process to launch is /sbin/init; for a
Debian VS, this would be /etc/init.d/rc 3.

On a Gentoo system, launching init
would normally just run the scripts for
the boot soft level before going on to run
default. Of course, you can’t use the
original Gentoo scripts for this purpose,
as the original scripts assume a native
system and privileged access such as to
/dev/hda1 for a filesystem check, or to
set the clock. This is why the baselay-
out-vserver package modifies /etc/inittab
and replaces the boot scripts to run just
the following:

bootmisc
domainname
hostname
local
net.lo
rmnologin
ssh
syslog-ng

It makes sense to stop the VServer at
this point by running vserver vs01 stop,
and to back up the complete filesystem
as a template for later virtual servers:
cd /vservers; tar zcvf vserver-gentoo-
template.tgz ./vs01

Anomalies
A virtual server should appear just like a
native Linux environment to applica-
tions and users. Some mapping is re-
quired to achieve this aim. One example
of this is the PID of the init process. Al-
though this is not strictly required, many
programs implicitly assume that init is
PID 1. There is no way for this to be true
of a VServer. Thus, the entry for init has
to be explicitly PID 1 when virtualizing
the /proc filesystem.

If the guest is a Debian VS, only /etc/
init.d/rc 3 is run on booting, and this
means that an init process does not even
exist. In this case, the /proc/1 has to be
simulated. This also applies to the other
entries below /proc, such as /proc/
uptime.

Adding more environments is quite
simple now. Use vserver to create a new
VS configuration, and copy the VS file-
system. Then change the network set-
tings. The vserver-new tool makes this
even simpler:

vserver-new vs02 U
--context 1002
--hostname vs02 --interface
vs02=eth1:192.168.39.14/24 U
clone vs01

Other Guests
The interesting thing about virtualiza-
tion based on kernel level partitioning is
that the kernel is the same for all parti-
tions, or virtual servers. This is not a
major restriction, as it does not stop you
installing third-party distributions as
guest systems. In our example, we will
be setting up a Debian guest on a Gentoo
host.

This is amazingly easy to do using de-
bootstrap. Instead of setting up a VServer
skeleton as described above, you can
allow vserver to cooperate with deboot-
strap. After running emerge debootstrap,
do this to complete the VServer installa-
tion.

vserver vs03 build U
--context 1003 U

To use the installed Gentoo guest sys-
tem in the virtual world of VServer, you
need to replace the Baselayout package
with the Baselayout-VServer package.
This mainly modifies the boot scripts,
causing some quite dramatic changes to
/etc/init.d/ (Listing1).

Gentoo Baselayout VServer

You have to make sure that server pro-
cesses in the host context do not bind to
all available interfaces and aliases. Fail-
ure to do so means that the daemons
running on the virtual servers will be un-
able to bind. The ssh daemon is a typical
troublemaker. The daemon is config-
ured to bind to all addresses by default.
To avoid this trap, make sure you enter
the right addresses in /etc/ssh/sshd_con-
fig, and make sure there are no entries
for the VServer aliases.

ListenAddress 192.168.1.0

ListenAddress 192.168.39.10

ListenAddress 192.168.48.10

The Address Binding Trap

VServerCOVER STORY

34 ISSUE 70 SEPTEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

--hostname vs03 U
--interface \
vs03=eth1:192.168.39.23/24 -m U
debootstrap -- -d sarge

Administration
The more VServers you set up, the more
storage capacity you will need. If all
your servers are created using the same
template, most of the files will be identi-
cal for multiple servers. To streamline
the process, you might like to allow your
virtual servers to share parts of the file-
system.

If guest administrators will not be
making any major changes to the serv-
ers, one option is to mount the root file-
system read-only with the exception of
/etc, /var, and the data filesystems. Un-
fortunately, this is too restrictive in
many setups.

Linux VServer uses a different tech-
nique: unification and copy-on-write
link breaking. First, the virtual subtrees
are unified by means of hardlinks.
Hardlinks are removed on writing, and
replaced by modified files (see the
following section, Unification and Copy-
on-Write Link Breaking).

Unification and Copy-on-
Write Link Breaking
If the virtual server directories reside on
one filesystem, you can use the vhashify
to group identical files in a central direc-
tory and replace the files by hardlinks
on the virtual servers, leaving just one
instance of each file object, and thus
saving storage space. Of course, write

access can only hap-
pen on the executing
virtual server. The ap-
proach that allows
this is known as copy-
on-write link breaking
(CoWLB). The
hardlink that points to
the central directory is
removed, and the file
is replaced by the
modified copy.
CoWLB is supported
by developer 2.1.0 of
the VServer patches,
or newer.

This approach can
be applied to arbitrary
directories, as the fol-
lowing example dem-

onstrates. A file called x resides in the
directories /vservers/a0[12]:

gs vservers # ls -li a0[12]/x
685511 -rw-r--r-- U
1 root root 942 U
Jan 17 07:12 a01/x
685514 -rw-r--r-- 1 U
root root 942 Jan 17 U
07:12 a02/x

By calling

gs vservers # U
/usr/lib/util-vserver U
/vhashify --manually U
--destination
/vservers/.hash U
/vservers/a01 exclude U
/vservers/vexclude

we can replace the file with a copy that
has inode 122620. Very small files are
ignored.

For the a01/x file, the immutable and
as unlink flags are set by vhashify. This
prevents modification of the file but al-
lows the hardlinks to be removed. This
is used to implement copy-on-write.

gs vservers # showattr a0[12]/x
----UI- a01/x
----ui- a02/x

This hasn’t had much effect thus far.
So let's apply the same principle to the
/vservers/a02 directory:

gs vservers # U
/usr/lib/util-vserverU
/vhashify --manually U
--destination U
/etc/vservers/.defaultsU
/apps/vunify/hash U
/vservers/a02 exclude U
/vservers/vexclude
gs vservers # ls -li a0[12]/x
122620 -rw-r--r-- 3 U
root root 942 Jan 17 07:12 a01/x
122620 -rw-r--r-- 3 U
root root 942 Jan 17 07:12 a02/x

Now both entries exist as hardlinks to
inode 122620. If we now change the file,
the hardlink is removed, and the file
replaced by a copy:

gs vservers # U
echo "test" >> a02/x
gs vservers # U
ls -li a0[12]/x
122620 -rw-r--r-- 2 U
root root 942 Jan 17 07:12 a01/x
685511 -rw-r--r-- 1 U
root root 947 Jan 17 07:14 a02/x

vhashify unifies the two directories on
the VServer vs01 and the clone vs02. The
/vservers/vexclude file contains an excep-
tion list with paths that we do not want
to unify. This makes sense for inherently
variable data such as the subtree below
/var, or the device files below /dev. vha-
shify is the successor to vunify and can
use the same default exception list in
/usr/lib/util-vserver/defaults/vunify-
exclude. If you now create a link, ln -s
/vservers/.hash /etc/vservers/.defaults/
apps/vunify/hash/0, you can unify

01 none /proc proc defaults 0 0

02 none /tmp tmpfs size=16m,mode=1777 0 0

03 none /dev/pts devpts gid=5,mode=620 0 0

04 # shared portage tree

05 /usr/portage /usr/portage none bind,ro 0 0

06 /usr/portage/distfiles /usr/portage/distfiles none bind,rw 0 0

Listing 3: fstab for VServer

Figure 1: Unifying filesystem branches with UnionFS.

Ext 3 NFS Ext 2

Virtual File System (VFS)

Union-FS

read-write read-only read-only

User process

Ke
rn

el
sp

ac
e

Us
er

sp
ac

e

COVER STORYVServer

35ISSUE 70 SEPTEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

simply by typing /usr/lib/util-vserver/
vhashifyvs02.

You will see that the .hash directory
has grown considerably, although noth-
ing appears to have happened to
/vservers/vs0[12].

gs vservers # U
du -sh /vservers/.hash U
/vservers/vs0[12]
391M /vservers/.hash
331M /vservers/vs01
331M /vservers/vs02

The vdu tool can correctly distinguish
between hardlinks. The space savings
for a large number of VServers are enor-
mous.

gs vservers # U
vdu /vservers/vs0[12]
/vservers/vs01 5K
/vservers/vs02 5K

Depending on what application you
have in mind for your VServers, you may
note that VS directories tend to drift
apart.

UnionFS
Another elegant approach to unifying
VServer subtrees uses UnionFS [6], and
it supports unification across filesystem
boundaries. UnionFS is (still) not in-
cluded with the official kernel and is ac-
tually masked in Gentoo. This means in-
stalling the kernel module and userpace
tools by running ACCEPT_KEYWORDS=

"~x86" emerge unionfs. Development is
making rapid progress, and the current
version is stable enough for our
purposes.

UnionFS [6] is a so-called fan-out file-
system. Filesystem operations are dis-
tributed across a fan of underlying file-
systems (Figure 1). The farther left a
branch is in the fan, the higher its prior-
ity. A search operation for a file, a, will
start in the branch on the far left and
end in the branch in which the file is
found.

If the branch with the highest priority
is mounted read-write in the fan, the
array can be used for write operations.
To delete a file, b, it is not sufficient to
delete the file from the highest priority
branch, as the file might exist in
branches farther to the right. In this
case, a whiteout file, .wh.b, is written to
mask the files to the right. This is even
necessary if the file is from a read-only
branch. If you create a file, C, the file can
only be created in the read-write branch.
To modify a file, d, from the read-only
branch, you first need to copy the file to
the read-write branch with the next
highest priority (copy-up).

We can use unionctl to dynamically
insert the /vservers/vsnoportage branch
into a unionfs filesystem in front of
/vservers/vsmaster, and we will probably
want to add an entry in /etc/fstab to
make this persistent:

none /vservers/vs04 U
unionfs dirs=/vserversU

/vs04diff=rw:/vserversU
/vsnoportage=ro:U
/vservers/vsmaster=ro 0 0

After starting VS vs04 we have a system
without portage package management.
Of course, this principle can be applied
to other packages that we need to add or
remove independently of the master.
However, package manipulation should
be restricted to one branch of the
UnionFS for consistency reasons.

If you intend to use BME and CoWLB,
in combination with UnionFS on a host
system, this currently means applying a
UnionFS patch [7]. This step is made
necessary by the vfs helper signature
changes caused by the Linux VServer
patches, and you lose compatibility to
kernel modules that call vfs helper in the
traditional way.

OpenVZ
OpenVZ [2], the free variant of the com-
mercial virtualization solution Virtuozzo
[3], provides similar functionality to
Linux VServer. The kernel patch is avail-
able on the OpenVZ website [2], as are
prebuilt kernels. For Gentoo there is a
openvz-sources package to help you inte-
grate the OpenVZ patches and other criti-
cal patches. The required user level tools
are located in the vzctl and vzquota pack-
ages. At this time of writing, the OpenVZ
patches are designed for kernel version
2.6.8. Stable patches are not available for
more recent kernels. A beta version of the
patches is available for kernel version
2.6.15. And you can always run genkernel
to build a kernel. But the easiest approach
is to use a stable configuration from the
OpenVZ website. Drop the version into /
usr/src/linux as the .config. Then proceed
to the build, as usual. To automatically
launch the OpenVZ server, you will want
to run rc-update add vz default.

Note that you will need to create the
/dev/vzctl before launching for the first
time: /bin/mknod /dev/vzctl c 126 0. If
the RC_DEVICE_TARBALL="yes" option
is set in /etc/conf.d/rc, the device file is
saved to /lib/udev-state/devices.tar.bz2
when you down the host, and regener-
ated the next time you boot.

Another important thing is to make
the required changes in /etc/sysctl.conf:

net.ipv4.ip_forward = 1
net.ipv4.conf.default.U

The introduction of contexts is one of the
most significant modifications that the
VServer patches make to the Linux ker-
nel. A context defines the number of pro-
cesses that cooperate and compete with
each other. Processes in different con-
texts can no longer cooperate on the
local system (see Figure 2). To allow this
arrangement , a context ID is added to
the PID to support unique process desig-
nation.

The original context is assigned an ID of
0. This context is automatically gener-
ated when the kernel is booted. The root
context does not play any special role in
separating processes, and the processes
in other contexts cannot be influenced
from within it. To give administrators an
overview of all the processes in all con-
texts on a system, the monitoring con-

text 1 has been introduced. All the pro-
cesses on the system are visible in con-
text 1, which you can only enter from the
root context. The vcontext command lets
you create a new context, or enter an
existing context.

The vcontext --migrate --xid 1 ps aux
command enters monitoring context 1
and launches ps aux in this context to
output a process list for all contexts. The
vps and vtop tools are available for sim-
ple administration work and will addi-
tionally list the context ID and context
name.

For reasons of security, the root context
0 should only be accessible for manag-
ing the other contexts on a Linux
VServer system. Services run in their
own contexts, and access to the root
context should be secured.

Contexts

VServerCOVER STORY

36 ISSUE 70 SEPTEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

proxy_arp = 0
net.ipv4.conf.all.rp_filter = 1
net.ipv4.conf.default.U
send_redirects = 1
net.ipv4.conf.all.U
send_redirects = 0
kernel.sysrq = 1

After you generate the kernel, modify
the bootloader, and install the userspace
tools, you can then relaunch the system.

Guests on OpenVZ
It might seem like a good idea to install
a Gentoo guest system right now, and it
will not be long until you can use the
baselayout-vserver template mentioned
earlier to do this [4]. Pack the VServer
master, and store it in /vz/template/
cache/vsmaster.tar.gz. You can then go
on to create an OpenVZ guest like this:

vzctl create 2001 U
--ostemplate vsmaster U
--ipadd 192.168.39.21 U
--hostname ovz01

Again, in a similar fashion to VServer,
we need to assign a context ID. Add .tar.
gz to the value of the parameter for os-
template, and rename the archive with
the guest system to /vz/template/cache.
This will not work in Gentoo, due to a
few bugs that should be easy to remove
but currently prevent production use.

On a brighter note, it is easy to install
a Debian guest system. Use debootstrap
to prepare a system, and compress the
system for installation on OpenVZ:

cd /vz/template/cache
mkdir debian_sarge
debootstrap sarge U
./debian_sarge
cd debian_sarge; tar zcvf U
../debian_sarge.tar.gz .

The installation tool, vzctl, unpacks the
archive, drops it into /vz/private/<id>,
and runs the /etc/vz/dists/scripts/post
create.sh script to make a few changes.

vzctl create 2005 U
--ostemplate debian-sarge U
--ipadd 192.168.39.25U
 --hostname ovz05

Note that OpenVZ uses /sbin/init to
launch the guest systems. The getty pro-

cesses launched by init are useless, due
to a lack of hardware access, and the
same applies to klogd. Virtualization
with OpenVZ removes /proc/kmsg. Make
sure you disable these services to resolve
these issues. As the boot scripts do not
run any mount commands, you will
need to replace /etc/mtab with a sym-
bolic link to /proc/mounts.

Template for Guest Systems
Use vzctl enter 2005 to change to the VPS
context. Make sure you verify, or explic-
itly set, the bash environmental vari-
ables. After running apt-get update, you
can install any software you need. Save
the modified guest system as a template
for Debian when you are finished; you
can then use the template to generate
additional guest systems.

If you need to perform special actions
when starting and stopping a virtual
server, you can use scripts to do so.
In contrast to what the OpenVZ manual
tells you, the Gentoo host system
expects these scripts in /etc/vz/
<vsid>.{mount,umount,start,stop}.
The mount/umount scripts run in the
host context, whereas the start/stop
scripts run in the VS context.

Templates for various distributions are
at [2]. Besides Debian, the templates
support CentOS and Fedora at present.
These distribution templates give you an
easy approach for installing both guest
systems.

Unfortunately, the methods we re-
ferred to earlier to support managing
large numbers of virtual servers are not

currently supported
by OpenVZ. Then
again, SWsoft does
offer a commercial
tool for this, Virtu-
ozzo.

UnionFS is no lon-
ger compatible to the
fairly ancient kernel
2.6.8, and you can’t
apply the BME
patches. This prob-
lem will disappear
when support for
more recent kernels
is implemented. As a
workaround for this
issue, you can try
swapping the VS file-
systems out to a

high-performance NFS server. This adds
the benefit of painless migration of a
virtual server from one physical machine
to another.

Future
Neither VServer nor OpenVZ has realized
its full potential. Besides effective VServer
management, it is also important for the
system to have granular resource controls
for managing hard disk space and CPU
cycles. Again, both the VServer and
OpenVZ projects do have mechanisms
such as quotas and fair-share scheduling
for resource control. ■

[1] Linux-VServer:
http:// linux-vserver. org/

[2] OpenVZ: http:// openvz. org/

[3] SWsoft Virtuozzo:
http:// www. virtuozzo. com/

[4] Gentoo VPS:
http:// dev. croup. de/ proj/ gentoo-vps

[5] Gentoo VServer-Utils project: http://
dev. croup. de/ proj/ vserver-utils

[6] UnionFS homepage: http:// www. fsl.
cs. sunysb. edu/ project-unionfs. html

[7] VServer development UnionFS patch:
http:// mozart. informatik. fh-kl. de/
download/ Software/ VServer/ vserver.
html

[8] VServer in Wikipedia: http://
en.wikipedia.org/wiki/Linux-VServer

[9] Freshmeat project details: http://fresh-
meat.net/projects/vserverl

[10] VServer paper: http://linux-vserver.
org/Linux-VServer-Paper

INFO

Figure 2: VServer creates isolated operating system partitions.

Hardware

Kernel
Ca

pa
bi

lit
ie

s

Vserver 1 Vserver 2

Contexts
1001

Contexts
1002

Process Process

et
h0
:0

/p
ro
c IP

C

et
h0
:1

/p
ro
c IP

C

COVER STORYVServer

37ISSUE 70 SEPTEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

