
69

My own small discussion forum
on perlmeister. com has at-
tracted too much attention

from link spammers recently. These par-
asites of the Web target their bots at pop-
ular forum software tools such as phpBB
or blog applications such as Wordpress,
bombarding them with postings that
contain very little aside from links to
poker and sex pages. Spammers try to
lure forum visitors into clicking on their
sponsors’ websites, and they are trying
to dupe the major search engines that
rate the importance of a page based on
the links pointing to it.

Spanner in the Spambot’s
Works
What is known as comment spam [2]
can be reduced by restricting postings to
registered users. But this obstacle is also
likely to frighten off legitimate users who
have qualms about privacy issues. And
moderating every posting before it
appears on the website may keep the
spammers out, but the effort required
for these checks is immense – not to
mention the unavoidable delays that
hamstring any discussion.

Captchas (“Enter the number dis-
played by the wiggly font”) help to en-
sure that there really is a human being at
the other end of the connection and not
a computer. Captchas don’t need to be
as complicated as on major registration
sites, as Jeremy Zawodny’s blog de-
monstrates. Users are simply asked to
enter the word “Jeremy” in a separate
field. Most bots would fail to do this, as
they concentrate on mass infestation and
can’t adapt to customizations that will
only work for a tiny percentage of the
market. And some bots do not really un-
derstand the interaction between JavaS-
cript and the browser’s DOM. This
means that even a trivial local change to

the forum software, with an obfus-
cating JavaScript would keep the
bots at bay.

Figures 2 and 3 show a trivial
extension of phpBB that adds a
switch to classify posters as spam-
mers first. Spam bots will simply
ignore the switch, or they will accept
the default value, exposing themselves
as spammers. If a human poster over-
looks the switch, an error message (Fig-
ure 3) lets the user know that they need
to flip the switch to enable posting.

Posted messages themselves open up
another approach to detecting comment
spam. If the message has a large number
of links and not much text, you can as-
sume that it will be spam. Of course,
false positives can be troublesome,
and you want to avoid tagging mes-
sages from legitimate users as spam.
Users are likely to be annoyed if
their postings are trashed, and you
may end up losing users to other
forums.

Mail for the Decision
Maker
For forums without too much traffic,
the email-based approach to modera-
tion provides a useful technique for
reducing spam. The posting-watcher
script, which runs as a cronjob, regu-
larly queries the Mysql database
used by phpBB on the forum system
to discover unread entries in the
phpbb_posts table, and caches
their IDs, along with a random
key, on the local disk. After doing
so, the script sends a message
with the most important data
from the posting (see Figure 4)
to the moderator.

The moderator can simply ig-
nore messages with legitimate
postings. If the posting turns

Spammers don’t just send email. They exploit discussion forums and blogs,

posting pseudo-messages full of links to dupe search engines. A Perl script

cleans up the mess. BY MICHAEL SCHILLI

A Perl script protects forums against spam

SPAM STOPPER

PROGRAMMINGPerl: Link Spam

69ISSUE 71 OCTOBER 2006W W W. L I N U X- M A G A Z I N E . C O M

out to be spam, the moderator can sim-
ply hit reply on their mail reader, which
sends the mail back to the original
script. The script then reads the random
key stored in the mail, checks the file
cache to locate the corresponding phpBB
posting ID, and sends a scraper off to the
website to remove the posting using the
web administration interface provided
by the phpBB forum software. I could
have modified phpBB’s database tables
directly, but I didn’t want to mess with
its inner workings to avoid unwanted
side effects.

After deleting the message, the script
then sends a confirmation message back
to the moderator. Figure 6 shows the
whole procedure. Based on this ap-
proach, all postings (including spam) are
first displayed by phpBB, but spam is
quickly removed without too much ef-
fort. As communications with the mod-
erator use email, a method that most
people use extensively every day, the
additional effort is negligible for forums
with low traffic levels and, as a side ef-
fect, the moderator automatically keeps
track of what goes on in the forum.

Preventing Misuse
Both the database monitor run regularly
by the cronjob and the scraper serial
mail killer are implemented by the same
script, posting-watcher. When the script
is called with the -c (check) parameter
set, it searches the database for new
postings and sends an email to the mod-
erator for each new posting it finds.

When launched
with the -k (kill)
command line pa-
rameter set, the
script expects an
email with a kill
key via STDIN.

You may be
wondering why
the email does
not simply contain
the posting ID.
To make sure that
posting-watcher
understands that
the spam killer
message origi-
nated with the
moderator (rather
than with an
abuser), it gener-

ates a random key, which cannot be triv-
ially guessed, when sending the message
and then stores the key in a local file
(Figure 5), along with the ID of the post-
ing to be investigated. If the moderator
sends the message back, the script ex-
tracts the random key and uses the table
to check if the key is assigned to a post-
ing that is currently being moderated; it
will only attempt to delete the posting if
these conditions are fulfilled.

Say It with Flowers
The phpBB forum software distributes
the forum data over 30 Mysql tables.
Postings are stored in phpbb_posts, but
not the body text of the message. In-
stead, phpBB uses the post_id column in
the phpbb_posts table to establish a link
between phpbb_posts and another table,
phpbb_posts_text, and thus associates
the posting with the full message text
(Figure 8).

Queries that link two tables in this
way are easy to handle with SQL. This
said, a mixture of Perl and SQL is not ex-
actly elegant, and this is why developers
now tend to drop object-oriented Perl
wrappers over relational databases.

This approach involves using object
methods to query the database and ma-
nipulate the data stored in it. SQL is not
required. You may remember me talking
about Class::DBI in [5], but just recently,
a new, and far more exciting framework
was released: Rose is not only more flexi-
ble, but has a better turn of speed.

The framework, which is available
from CPAN, uses the Rose::DB abstrac-
tion to talk to databases and Rose::DB::
Object to access rows in database tables.

Relationships
As Listing 1 PhpbbDB.pm shows, there is
no need to manually enter table column
names, just to define the object-rela-
tional wrapper. auto_initialize() lets
Rose autonomously search popular data-
base systems (MySQL, Postgres, …), and
automatically creates the methods re-
quired to build up an abstraction layer.

Normally, links between tables in rela-
tional databases are implemented by
means of a foreign key in an extra col-
umn, but phpBB does its own thing here,
using two primary keys, both of which
are called post_id (Figure 8). This is a
pity, because Rose has a convention
manager that guesses table relations
based on conventions (in a similar ap-
proach to Ruby on Rails). If everything is
set up in a standard way, you can simply
call Rose::DB::Object::Loader and let
Rose automagically take care of every-
thing else.

If Rose finds a table titled phpbb_posts
(in the plural), it creates a class titled

PhpbbPost (in the
singular). Table
names with un-
derscores become
CamelCase class
names. Thus there
is no need for
PhpbbDB.pm to
call __PACKAGE_
->meta->
table('phpbb_
topics');, as Rose
will automatically
guess the table
name of phpbb_

Figure 1: A spammer has set up camp in a forum.

Figure 2: A new switch keeps bots at bay.

Figure 3: If a users forgets to flip the switch from “Spammer” to

“User”, an error message draws their attention to the mistake.

Perl: Link SpamPROGRAMMING

70 ISSUE 71 OCTOBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

topics, based on the class name of
PhpbbTopic.

If Rose detects a foreign key named
post_text, it looks for another table titled
post_texts. Rose then links the two
classes PhpbbPost and PostText using a
“many to one”-(N:1) relation. Note that

table names are always plural (post_
texts), whereas column names for foreign
keys in 1:1 and N:1 relations are singular.

Getting Help
If an application’s database schema does
not follow this convention, you can ei-

ther modify the convention manager, or
step in to help Rose. Thus, Lines 50ff. of
Listing 1 PhpbbDB.pm specifies the rela-
tionships between the phpbb_posts table,
and the phpbb_posts_text and phpbb_
topics tables, using add_relationships to
do so. The text relationship (in Line 51)
specifies a “one to one”-(1:1) relation-
ship between the phpbb_posts table and
the phpbb_posts_text table. Note that
the table name is not in the plural here,
since phpBB uses singular. Rose plays
along just fine, because the definition of
PhpbbPostsText explicitly defined the
table name to be phpbb_posts_text.

“One to one” means that every row in
phpbb_posts, is associated with a row in
phpbb_posts_text, and vice-versa. There
are also "one to many" (1:N), "many to
one" (N:1), and "many to many" (N:N)
relation types. The important thing is to
call add_relationships before calling
auto_initialize(); otherwise Rose won’t
create the necessary relationship meth-
ods in auto_initialize().

This mainly automatically applied ab-
straction wrapper lets developers query
the value of, say, the post_id column in a

Figure 4: The forum moderator can check the message and decide whether to keep or discard

the posting.

01 #############################

02 package Phpbb::DB;

03 #############################

04 use base qw(Rose::DB);

05 __PACKAGE__

06 ->use_private_registry();

07 __PACKAGE__->register_db(

08 driver => 'mysql',

09 database => 'forum_db',

10 host =>

11 'forum.db.host.com',

12 username => 'db_user',

13 password => 'XXXXXX',

14);

15

 16 #############################

17 package Phpbb::DB::Object;

18 #############################

19 use base

20 qw(Rose::DB::Object);

21

 22 sub init_db {

23 Phpbb::DB->new();

24 }

25

 26 #############################

27 package PhpbbTopic;

28 #############################

29 use base "Phpbb::DB::Object";

30 __PACKAGE__->meta

31 ->auto_initialize();

32

 33 #############################

34 package PhpbbPostsText;

35 #############################

36 use base "Phpbb::DB::Object";

37 __PACKAGE__->meta->table(

38 'phpbb_posts_text');

39 __PACKAGE__->meta

40 ->auto_initialize();

41

 42 #############################

43 package PhpbbPost;

44 #############################

45 use base "Phpbb::DB::Object";

46

 47 __PACKAGE__->meta->table(

48 'phpbb_posts');

49 __PACKAGE__->meta

50 ->add_relationships(

51 text => {

52 type => "one to one",

53 class =>

54 "PhpbbPostsText",

55 column_map => {

56 post_id => 'post_id'

57 },

58 },

59 topic => {

60 type => "one to one",

61 class => "PhpbbTopic",

62 column_map => {

63 topic_id => 'topic_id'

64 },

65 }

66);

67

 68 __PACKAGE__->meta

69 ->auto_initialize();

70 __PACKAGE__->meta

71 ->make_manager_class(

72 'phpbb_posts');

73

 74 1;

Listing 1: PhpbbDB.pm

PROGRAMMINGPerl: Link Spam

71ISSUE 71 OCTOBER 2006W W W. L I N U X- M A G A Z I N E . C O M

PhpbbPost class object using the post_id()
method, and, thanks to the relationship
created previously, to call the
text()->post_text() chain of methods to
access the text string of the posting, which
is located in the phpbb_posts_text table
but linked to by phpbb_posts!

A comprehensive description
of the object-oriented Rose data-
base wrapper, and practical ex-
amples of its use, are available
in the CPAN distribution of the
module, and you'll find an excel-
lent Rose tutorial at [4].

Key Generator
To support SELECT-style collec-
tive querying of an abstracted
table, the PhpbbPost class is told
in Line 71 of PhpbbDB.pm to cre-
ate the PhpbbPost::Manager class,

whose query() method performs the
query.

Notice that the syntax for this query is
an amazingly clean construct in pure
Perl (see Line 99 and Line 100 in post-
ing-watcher): [post_id => { gt =>
$latest }].

The query corresponds to SELECT ...
WHERE post_id > $latest. If the search
is successful, the get_phpbb_posts()
method returns a reference to an ar-
ray that contains matching objects of
the class PhpbbPost. Thanks to the
post_id(), text()->post_text(), and
topic()->topic_title() methods, and the
relations defined for the tables, the ob-
jects return the posting ID, its title, and
the text as strings. The posting-watcher
script uses this data to fill an email to
the moderator with content.

The persistent cache, which maps the
post IDs to the random keys mentioned
previously, is implemented by the CPAN
Cache::FileCache module. As specified in
Line 25, entries become obsolete after 14
days and are then treated as if accepted.
The purge() method (Line 37) clears up
obsolete entries.

 Listing 2: posting-watcher Listing 2: posting-watcher
001 #!/usr/bin/perl -w
002 use strict;
003 use PhpbbDB;
004 use Cache::FileCache;
005 use Digest::MD5;
006 use Mail::Mailer;
007 use Mail::Internet;
008 use Text::ASCIITable;
009 use Text::Wrap qw(wrap);
010 use Getopt::Std;
011 use
012 WWW::Mechanize::Pluggable;
014 getopts("kc", \my %opts);
016 my $FORUM_URL =
017 "http://foo.com/forum";
018 my $FORUM_USER =
019 "forum_user_id";
020 my $FORUM_PASS = "XXXXXXXX";
022 my $TO = 'moderator@foo.com';
023 my $REPL =
024 'forumcleaner@foo.com';
025 my $EXPIRE = 14 * 24 * 3600;
027 my $cache =
028 Cache::FileCache->new(
029 {
030 cache_root =>
031 "$ENV{HOME}/phpbb-cache",
032 namespace =>
033 "phpbb-watcher",
034 }
035);
037 $cache->purge();
038 039 if ($opts{k}) {

040 my @data = <>;
041 my $body = join '', @data;
042 if ($body =~
043 /\[delete-key (.*?)\]/)
044 {
045 my $id = kill_by_key($1);
046 my $mail =
047 Mail::Internet->new(
048 \@data);
049 if ($mail) {
050 my $reply =
051 $mail->reply();
052 $reply->body(
053 [
054 "Deleted posting $id.\n\n",
055 @data
056]
057);
058 $reply->send()
059 or die
060 "Reply mail failed";
061 }
062 }
063 }
064 elsif ($opts{c}) {
065 check();
066 }
067 else {
068 die "Use -c or -k";
069 }
071 #############################
072 sub kill_by_key {
073 #############################

074 my ($key) = @_;
075 my $id =
076 $cache->get("key$key");
077 if (defined $id) {
078 msg_remove($id);
079 }
080 else {
081 die "Invalid key $key";
082 }
084 return $id;
085 }
087 #############################
088 sub check {
089 #############################
090 my $latest =
091 $cache->get("_latest");
092 $latest = -1
093 unless defined $latest;
095 my $new_posts =
096 PhpbbPost::Manager
097 ->get_phpbb_posts(
098 query => [
099 post_id =>
100 { gt => $latest }
101]
102);
104 foreach my $p (@$new_posts)
105 {
106 my $id = $p->post_id();
108 my $key = genkey();
110 mail(
111 $id,
112 format_post(

113 $id,
114 $p->text()
115 ->post_text(),
116 $p->topic()
117 ->topic_title(),
118 $key
119),
120 $key
121);
123 $cache->set("key$key",
124 $id, $EXPIRE);
126 $latest = $id;
127 }
128
 129 $cache->set("_latest",
130 $latest);
131 }
133 #############################
134 sub genkey {
135 #############################
136 return
137 Digest::MD5::md5_hex(
138 Digest::MD5::md5_hex(
139 time()
140 . {}
141 . rand()
142 . $$
143)
144);
145 }
147 #############################
148 sub mail {
149 #############################

150 my ($id, $body, $key) =
151 @_;
153 my $m =
154 Mail::Mailer->new(
155 'sendmail');
157 $m->open(
158 {
159 To => $TO,
160 Subject =>
161 "Forum News (#$id)

[delete-key $key]",
162 From => $REPL
163 }
164);
166 print $m $body;
167 }
169 #############################
170 sub format_post {
171 #############################
172 my (
173 $id, $text,
174 $topic, $key
175)
176 = @_;
178 my $t =
179 Text::ASCIITable->new(
180 { drawRowLine => 1 });
182 $t->setCols('Header',
183 'Content');
184 $t->setColWidth("Header",
185 6);
187 $Text::Wrap::columns = 60;
189 $text =~

190 s/[^[:print:]]/./g;
192 $t->addRow('post',
193 "#$id");
194 $t->addRow('topic',
195 $topic);
196 $t->addRow('text',
197 wrap("", "", $text));
198 $t->addRow('key',
199 "[delete-key $key]");
201 return $t->draw();
202 }
204 #############################
205 sub msg_remove {
206 #############################
207 my ($post_id) = @_;
209 my $mech =
210 WWW::Mechanize::Pluggable
211 ->new();
212 $mech->get($FORUM_URL);
214 $mech->phpbb_login(
215 $FORUM_USER,
216 $FORUM_PASS
217);
218 $mech->get(
219 "$FORUM_URL/viewtopic.

php?p=$post_id"
220);
221 $mech->phpbb_post_remove(
222 $post_id);
223 }

Figure 5: The content of the file cache which stores

the random key and the corresponding post IDs.

Perl: Link SpamPROGRAMMING

72 ISSUE 71 OCTOBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

The ID of the last message to be mod-
erated is stored by Line 129 under the
_latest key in the cache, which maps the
random keys to the post IDs for emails
mentioned previously. The check() func-
tion in Listing 2 posting-watcher extracts
the ID of the last posting currently under
investigation from the cache and issues
an SQL query that returns all postings
with more recent IDs.

The 32 bytes hex format key string is
created by the genkey() function in Line
138. It uses a method copied from the
Apache::Session CPAN module, which
runs the current time, a memory ad-
dress, a random number, and the ID of
the current process through an MD5
hash twice to produce a random parame-
ter.

This combination creates an almost
one hundred percent unique key, which

is also very difficult to guess. Whoever
knows this key can delete the posting
that’s mapped to the key in the cache
from the forum. The posting-watcher

script sends the key to the moderator
and, if the moderator sends the key back
to the script, the script launches the
agent that removes the posting from the

 Listing 2: posting-watcher Listing 2: posting-watcher
001 #!/usr/bin/perl -w
002 use strict;
003 use PhpbbDB;
004 use Cache::FileCache;
005 use Digest::MD5;
006 use Mail::Mailer;
007 use Mail::Internet;
008 use Text::ASCIITable;
009 use Text::Wrap qw(wrap);
010 use Getopt::Std;
011 use
012 WWW::Mechanize::Pluggable;
014 getopts("kc", \my %opts);
016 my $FORUM_URL =
017 "http://foo.com/forum";
018 my $FORUM_USER =
019 "forum_user_id";
020 my $FORUM_PASS = "XXXXXXXX";
022 my $TO = 'moderator@foo.com';
023 my $REPL =
024 'forumcleaner@foo.com';
025 my $EXPIRE = 14 * 24 * 3600;
027 my $cache =
028 Cache::FileCache->new(
029 {
030 cache_root =>
031 "$ENV{HOME}/phpbb-cache",
032 namespace =>
033 "phpbb-watcher",
034 }
035);
037 $cache->purge();
038 039 if ($opts{k}) {

040 my @data = <>;
041 my $body = join '', @data;
042 if ($body =~
043 /\[delete-key (.*?)\]/)
044 {
045 my $id = kill_by_key($1);
046 my $mail =
047 Mail::Internet->new(
048 \@data);
049 if ($mail) {
050 my $reply =
051 $mail->reply();
052 $reply->body(
053 [
054 "Deleted posting $id.\n\n",
055 @data
056]
057);
058 $reply->send()
059 or die
060 "Reply mail failed";
061 }
062 }
063 }
064 elsif ($opts{c}) {
065 check();
066 }
067 else {
068 die "Use -c or -k";
069 }
071 #############################
072 sub kill_by_key {
073 #############################

074 my ($key) = @_;
075 my $id =
076 $cache->get("key$key");
077 if (defined $id) {
078 msg_remove($id);
079 }
080 else {
081 die "Invalid key $key";
082 }
084 return $id;
085 }
087 #############################
088 sub check {
089 #############################
090 my $latest =
091 $cache->get("_latest");
092 $latest = -1
093 unless defined $latest;
095 my $new_posts =
096 PhpbbPost::Manager
097 ->get_phpbb_posts(
098 query => [
099 post_id =>
100 { gt => $latest }
101]
102);
104 foreach my $p (@$new_posts)
105 {
106 my $id = $p->post_id();
108 my $key = genkey();
110 mail(
111 $id,
112 format_post(

113 $id,
114 $p->text()
115 ->post_text(),
116 $p->topic()
117 ->topic_title(),
118 $key
119),
120 $key
121);
123 $cache->set("key$key",
124 $id, $EXPIRE);
126 $latest = $id;
127 }
128
 129 $cache->set("_latest",
130 $latest);
131 }
133 #############################
134 sub genkey {
135 #############################
136 return
137 Digest::MD5::md5_hex(
138 Digest::MD5::md5_hex(
139 time()
140 . {}
141 . rand()
142 . $$
143)
144);
145 }
147 #############################
148 sub mail {
149 #############################

150 my ($id, $body, $key) =
151 @_;
153 my $m =
154 Mail::Mailer->new(
155 'sendmail');
157 $m->open(
158 {
159 To => $TO,
160 Subject =>
161 "Forum News (#$id)

[delete-key $key]",
162 From => $REPL
163 }
164);
166 print $m $body;
167 }
169 #############################
170 sub format_post {
171 #############################
172 my (
173 $id, $text,
174 $topic, $key
175)
176 = @_;
178 my $t =
179 Text::ASCIITable->new(
180 { drawRowLine => 1 });
182 $t->setCols('Header',
183 'Content');
184 $t->setColWidth("Header",
185 6);
187 $Text::Wrap::columns = 60;
189 $text =~

190 s/[^[:print:]]/./g;
192 $t->addRow('post',
193 "#$id");
194 $t->addRow('topic',
195 $topic);
196 $t->addRow('text',
197 wrap("", "", $text));
198 $t->addRow('key',
199 "[delete-key $key]");
201 return $t->draw();
202 }
204 #############################
205 sub msg_remove {
206 #############################
207 my ($post_id) = @_;
209 my $mech =
210 WWW::Mechanize::Pluggable
211 ->new();
212 $mech->get($FORUM_URL);
214 $mech->phpbb_login(
215 $FORUM_USER,
216 $FORUM_PASS
217);
218 $mech->get(
219 "$FORUM_URL/viewtopic.

php?p=$post_id"
220);
221 $mech->phpbb_post_remove(
222 $post_id);
223 }

Figure 6: The content spam killer uses email to talk to the moderator.

New
postings?

key <123>

key <123>

Cache

_latest #

#

#

Cron

FROM:

TO:
SUBJECT:

kdfk kdj dkfdkjf jdkjf lldl ldl dl d ope k
kdfk kdj dkfdkjf jdkjf lldl ldl dl d ope k
kdfk kdj dkfdkjf jdkjf lldl ldl dl d ope k

key <123>

Email client

Email

Forum

Scraper (www::Machenize)
 .forward

Check
Email reply

confirm

Click

PROGRAMMINGPerl: Link Spam

73ISSUE 71 OCTOBER 2006W W W. L I N U X- M A G A Z I N E . C O M

forum by simulat-
ing mouse clicks
in the forum’s ad-
ministrative GUI.

ASCII Art
by Email
To make sure the
messages about
new postings
received by the
moderator are
neatly formatted,
the format_post
function defined
in Line 170 places
the ID, title, and
text in the ASCII
box shown in Fig-
ure 4. The box is
created without
much ado by the
Text::ASCIITable
CPAN module. As
the text contains
tabs and other
non-printing char-
acters, the regular
expression in Line 190 filters them, in-
serting dots instead. Before the text is in-
serted into the box, the Text::Wrap mod-
ule sets the line width to 60 characters.
Finally, the format_post inserts the secret
key into the last line of the ASCII table.
A Subject: line is added to the email, al-
lowing the moderator to press the Reply
button in the mail client to return the
key as part of the subject line (but with
"Re: ..." added) to the spam killer.

CPAN’s Serial Killer
The msg_remove in Line 205 launches
the WWW::Mecha-
nize screen scraper
using a plugin
mechanism devel-
oped by my co-
worker at Yahoo, Joe
McMahon, using the
WWW::Mechanize::
Pluggable CPAN
module. The module
supports construct-
ing simple plugins,
which can then be
uploaded and
shared on CPAN,
to extend WWW::
Mechanize with

practical features. For example,
WWW::Mechanize::Pluggable::
Phpbb adds the phpbb_login and
phpbb_post_remove methods to
WWW::Mechanize to log the vir-
tual browser user in as a Phpbb
forum administrator, and press
the right buttons to remove a
posting identified by its ID. msg_
remove then mails the moderator
to confirm that the job has been
done (Figure 9).

Installation
To make sure that emails sent to the
spam killer’s Unix account are for-
warded to posting-watcher, we need a
.forward file with the following content
in the user’s home directory: | /full/
path/to/posting-watcher-kill.sh

The full command line is then avail-
able in the executable shell script, post-
ing-watcher-kill.sh:

#!/bin/sh
/full/path/to/posting-watcher -k

The reason for this is
that the .forward file
can’t handle command
line options, just plain
program or script calls.

Make sure you enter
your own values in
Lines 16 through 25 of
posting-watcher with
valid email addresses,
a forum URL, and the
username and password
of the forum admin.

The cronjob that
checks the forum data-
base for new entries

every 15 minutes is called by entering
crontab -e, and then adding: */15 * * * *
/full/path/to/posting-watcher -c.

The important thing is to ensure that
the script finds the PhpbbDB.pm module
file. If PhpbbDB.pm is stored at a differ-
ent location than the other Perl modules,
you can point posting-watcher to the
module directory by specifying use lib
'/path/to/moduledirectory';

You can extend the script to automati-
cally delete postings that match specific
criteria (that contain more than a certain
number of links, or certain keywords, for
example) without asking the moderator
for permission. Fight spam! ■

Figure 8: The unusual link between two tables in the

phpBB forum software.

Figure 9: Confirming deletion.

[1] Listings for this article: http:// www.
linux-magazine.com/ Magazine/
Downloads/ 71/ Perl

[2] Benjamin Trott, “Comment Spam”
http:// www. sixapart. com/ about/ news/
2003/ 10/ comment_spam. html

[3] Forum software phpBB:
http:// phpbb. com

[4] Excellent tutorial on Rose: http://
search. cpan. org/ dist/ Rose-DB-Object/
lib/ Rose/ DB/ Object/ Tutorial. pod

[5] Michael Schilli, “Go Get It!”,
Destop Search in Perl,
Linux Magazine 10/ 2005, http:// www.
linux-magazine. com/ issue/ 59/ Perl_
Desktop_Searches. pdf

INFO

Figure 7: The database tables

used by the phpBB forum soft-

ware.

Michael Schilli works
as a Software Devel-
oper at Yahoo!,
Sunnyvale, Califor-
nia. He wrote “Perl
Power” for Addison-
Wesley and can be
contacted at mschilli@perlmeister.
com. His homepage is at
http://perlmeister.com.

T
H

E
 A

U
T

H
O

R

Perl: Link SpamPROGRAMMING

74 ISSUE 71 OCTOBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

