
22

Crypto filesystems keep your data
safe – even if someone steals
your computer. The recent popu-

larity of portable PCs has brought in-
creased awareness about the need for
protection, but even users with desktop
systems have reasons for wanting to en-
sure that their data stays secret.

Linux offers a number of encrypted
filesystem options – each with a different
approach to the encryption problem. We

took a look at some of the alternatives,
with the goal of providing some insights
on encryption techniques, code quality,
and the relative merits of the various so-
lutions. We examined the following en-
crypted filesystems:
• Loop-AES
• DM-Crypt
• Truecrypt
• Crypto-FS
• Enc-FS

In addition to looking at technologies
and techniques, we will also examined
some performance parameters for these
encryption options.

Because few of these systems docu-
ment technical details – the laudable ex-
ceptions being Truecrypt and Enc-FS –
auditing means wading through tons of
source code (generated by reverse engi-
neering). While researching this article,
we couldn’t help feeling that source code

If you’re not a security expert and you're looking for a crypto filesystem, you may be wondering about the

alternatives. We took at a look at some popular crypto options for Linux.

BY PETER GUTMANN, CHRISTIAN NEY

Shopping for an encrypted filesystem

SECRET CANDIDATES

A
kh

ilesh
 S

h
a
rm

a
, Foto

lia

Encrypted FilesystemsCOVER STORY

22 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

analysis was more like an archaeological
excavation than a code audit. Relevant
functions were hidden away under mul-
tiple layers of code deposits, discarded
software, and encryption experiments.
But at least they shed some light on how
the developers tried out various ap-
proaches to the problems of filesystem
encryption.

Loop-AES
Loop-AES [1] is the oldest of the crypto
filesystems we investigated for this arti-
cle. It uses the venerable kernel loop
module, and it will even run with the 2.0
kernel. The function of Loop-AES is sim-
ilar to that of Cryptoloop, which has
since proved to be insecure. Loop-AES
works at the block device level and
writes encrypted files to a container file
or a partition designed specifically for
that purpose.

Although Loop-AES performs some
fairly low level system tricks, and the
underlying technology is venerable to
say the least, it is easy to use in practical
applications. Crosscrypt [4] adds the
ability to read Loop-AES containers on
Windows.

A confusing number of options for
building and using the Loop-AES filesys-
tem prevents an effective security analy-
sis. Encryption performance is radically
different depending on your selection.
The cluttered source code also prevents
an audit, making it difficult to find out
just what happens at the core of Loop-
AES, and if the code really does what it
claims to do.

Loop-AES does not use a salt (a series
of random bits) to hash the password,
which would prevent the case of the
same password generating identical
keys. Additionally, the Loop-AES algo-

rithm uses a single hashing iteration
(such as SHA-256 or SHA-512) to gener-
ate the encryption key. This approach
leaves Loop-AES open to dictionary at-
tacks – where a cracker uses dictionaries
and rulesets to generate a list of possible
passwords and calculate the hash in ad-
vance. The result is a collection of
hashes that can be tried out, avoiding
the need to test all possible combina-
tions of numbers (which would be a
brute force attack).

The readme for Loop-AES [3] main-
tains that Loop-AES is capable of using

both salting and multiple iterations. The
Loop-AES sample configuration files that
Google turned up showed no trace of a
salt and set the iteration value to 100
(which corresponds to 100,000 itera-
tions). By default, Loop-AES does not
use either salting or password hash itera-
tions.

If a user explicitly selects iterations
(and this only appears to be possible for
AES-256), the software encrypts two
128-bit blocks with the initial key and
exchanges the higher value 64 bits of the
first 128-bit block with the lower value

Installing Loop-AES from the source
code package is the first obstacle. The
package requires the matching kernel
sources, including the components gen-
erated by the build – admins can look
forward to building the kernel from
scratch in most cases. You will also need
to patch and recompile the fundamental
util-linux [2] package, which contains im-
portant system commands, such as
mount. At least the readme file [3] ex-
plains the process fairly well, providing
useful tips at the same time, such as how
to use Loop-AES in connection with soft-
ware suspend. As this is very low level
stuff, readers are well advised to stick to
distribution-specific packages. Ubuntu
users have a fairly easy time of things, as
Listing 1 shows. The Aptitude command
in Line 1 installs the required packages.
The module-assistant in Lines 2 through
4 then generates an appropriate Loop-
AES package from the source code. A
minor bug occurs at this point, but one
that is easily remedied: During the build,
the system complains that debian/rules
does not have the required privileges.
The answer to this problem is to pop up
a terminal window, change the permis-

sions manually by giving the chmod +x /
usr/src/modules/loop-aes/debian/rules
command, and then repeat the build.
Line 5 installs the resulting package.

Good system integration and a collec-
tion of customized tools make Loop-AES
easy to use. Line 7 in Listing 1 shows a
call to Losetup, which sets up a logical
connection between the loop0 loop de-
vice and the /dev/hda6 partition. You
could just as easily specify a normal file
as the block device here; the file would
act as a container for the crypto block de-
vice. When prompted, enter a password
with at least 20 characters; Losetup then
writes the headers required by Loop-
AES to the partition. An XFS filesystem
is created in Line 8 to complete the loop
device, which can then be mounted.
After umounting, losetup -d /dev/loop0
unmaps the logical connection to the
physical device. To automate mounting,
you can add the following to your /etc/
fstab:

/dev/hda6 /home/chris/loopaes U

xfs defaults,loop=/dev/loop0,U

encryption=AES256 0 0

Getting Started with Loop-AES

advertisement

COVER STORYEncrypted Filesystems

64 bits of the second block. This algo-
rithm is repeated for as long as you
would like to repeat it in order to return
the final 256-bit value.

As the name would suggest, Loop-AES
uses the AES algorithm in CBC mode for
encryption. The collection of options for
handling the Initialization Vector (IV) is
confusingly large, and includes options
to set the sector number or an MD5 hash
of this number as the IV.

Loop-AES has a major programming
error in common with many crypto pro-
grams: the code entirely fails to check
the return values of function calls. If an
error occurs on calculating the key, the
software just proceeds as normal with-
out even noticing that the key is a bunch
of zeros. This leaves the data practically
unencrypted.

The code is so poor in part that the
program would be more likely to crash
with a null pointer dereference than ac-
tually with the use of an empty key. But
relying on careless programming to pro-
tect oneself against more serious errors
seems grossly negligent.

DM-Crypt
DM-Crypt [5] officially became part of
the device mapper with kernel version
2.6.4, providing a transparent data en-
cryption service. The system can use a
separate partition or a container (by way
of Losetup) for storage.

In contrast to Loop-AES, DM-Crypt is
not restricted to a single algorithm: users
can select any algorithm known to the

kernel. In contrast
to its insecure pre-
decessor, Cryp-
toloop, the ap-
proach used by
DM-Crypt, is use-
ful for journaled
filesystems such
as Ext 3 or XFS.
DM-Crypt even
mounts Cryp-
toloop containers,
making the transi-
tion from Crypto-
look painless for
users. In addition
to the kernel mod-
ule, the DM-Crypt
system requires a
number of user-
space tools.

The cryptsetup program should have
been included with every distribution by
now. Unfortunately, Ubuntu, which is
very user-friendly apart from this, steps
out of line, hiding this critical package in
the Universe repository.

Today, cryptsetup is typically seen in
combination with Clemens Fruhwirth’s
LUKS (Linux Unified Key Setup, [6],
[7]). Our tests of DM-Crypt included
LUKS.

LUKS stores its metadata in the con-
tainer header, managing multiple pass-
words, which the admin can revoke indi-
vidually without needing to re-encrypt
the data. This ensures secure access by

multiple users. Windows can read DM-
Crypt formats in connection with Free
OTFE [8].

DM-Crypt’s biggest advantage is its
seamless integration with the system as
a whole. Debian and Ubuntu show how
admin-friendly this can be, using a con-
figuration file to automate the whole
process at system boot time. Unnoticed
by the user, it sets up an encrypted swap
in a very elegant way:

swap /dev/hda2 /dev/random swap

This entry in /etc/crypttab applies to the
swapspace on /dev/hda2. At system

01 sudo aptitude install
loop-aes-utils loop-aes-source

02 sudo module-assistant update

03 sudo module-assistant prepare

04 sudo module-assistant build
loop-aes

05 sudo dpkg -i
loop-aes-2.6.15-26-686_
3.1b-8+2.6.15-26.45_i386.deb

06

 07 losetup -e AES256 /dev/loop0 /
dev/hda6

08 mkfs.xfs /dev/loop0

09 mount /dev/loop0 /home/chris/
loopaes

Listing 1: Loop-AES on
Ubuntu

A modified Cryptsetup package is re-
quired for LUKS – most modern distribu-
tions should have this by default. If your
distribution doesn’t, check out [9] for a
collection of packages. A container is
easily prepared:

cryptsetup luksFormat -y -c U

aes-cbc-essiv:sha256 /dev/hda6

cryptsetup luksOpen U

/dev/hda6 crypto mkfs.ext3 U

/dev/mapper/crypto

The first command prepares /dev/hda6
as the device to be encrypted. It sets up
the container header, which will store
the key material among other things
later. The -y option prompts twice for the
passphrase. As an alternative, Crypt-
setup can also use a key file.

The -c aes-cbc-essiv:sha256 parameter
tells DM-Crypt to write data in CBC (Ci-
pher Block Chaining) mode and supply a
SHA-256 hashed initialization vector.
Without these parameters, the data
would be susceptible to watermarking, a
hack that involves the attacker preparing
files and proving that the files reside
within the container despite encryption.
If you do not trust the default key length
of 128 bits, you can double this by speci-
fying -s 256.
luksOpen in the second command puts
the physical device in the hands of the
device mapper, and it can now be ad-
dressed as crypto. Just like for a RAID or
LVM (Logical Volume Manager) device,
the last line then creates a filesystem, Ext
3 in our case. The cryptsetup luksRe-
move crypto command then removes
the device from the system.

Getting Started with LUKS and DM-Crypt

Figure 1: TrueCrypt provides a graphic user interface for managing

file resources.

Encrypted FilesystemsCOVER STORY

24 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

launch time, DM-Crypt grabs a random
key from /dev/random and uses the key
to encrypt the swap device. But en-
hanced security comes at a price: sus-
pend to disk no longer works.

DM-Crypt has many characteristics in
common with Loop-AES: both are kernel
modules, and both confuse the user with
too many build and runtime options.
The default configuration is restricted to
a single RIPEMD-160 hash iteration and
does without a salt. The default IV mode
is plain, which uses the 32-bit sector
number as the IV.

Thankfully, there is a more secure
mode known as ESSIV that encrypts the
sector number (to prevent an attacker
guessing it). However, our web search
for configuration examples, and the ex-
ample on the homepage, lead us to sus-
pect that not many users actually go for
ESSIV. Also, the security gains with
ESSIV mode are minimal because the
ESSIV is kept for all the data in this sec-
tor. From a cryptographic point of view,
every sector should have a new IV for
every change.

The LUKS variant of the DM-Crypt sys-
tem performs much better, although, for
some reason, the DM-Crypt-LUKS con-
figuration keeps the insecure DM-Crypt
parameter by default. This said, Crypt-
setup-LUKS uses the encrypted sector

number as the default IV when creating
a device in LUKS format.

The main task for the LUKS extension
is key management, however, and there
are some notable improvements in this
area. LUKS uses the established PBKDF2

Figure 2: A Truecrypt container without (top) and with (bottom) a hidden volume.

���������������

�������������

������
����

������ ��������������

����������
������ ������

advertisement

COVER STORYEncrypted Filesystems

standard key generation method to de-
rive a key from the password.

Truecrypt
Truecrypt [11] claims to be both secure
and portable. The Truecrypt application
uses encrypted containers on both Linux
and Windows systems. Encryption algo-
rithms include AES, Blowfish, Cast 5,

Serpent, Triple-DES, and Twofish, and
combinations of multiple variants are
possible.

Three hash algorithms (RIPEMD-160,
SHA-1, and Whirlpool) ensure integrity.
Truecrypt (Figure 1) can use both files
and partitions as containers. The former
method is more popular with Truecrypt
users.

The developers em-
phasize the user’s
ability to plausibly
deny the existence of
encrypted files. The
way Truecrypt tries to
do this is by using a
prepared container
that does not give rise
to speculations on en-
cryption. The software
fills the container with
random garbage data,
and appends an inner
container at the end of
the shell – like Rus-
sian dolls (Figure 2).

With the release of
Truecrypt version 4.2
(in April 2006), this
open source program,
which was originally
developed for Win-
dows, introduced sup-

port for creating encrypted files on
Linux. The initial step was only possible
on Windows prior to this.

The software can’t deny its origins,
and the port to Linux is still incomplete.
For one thing, it does not have the user
interface that Windows users may be fa-
miliar with. The documentation for Win-
dows is very good and comprehensive;

01 sudo aptitude install
build-essential linux-source
gawk

02 cd /usr/src

03 sudo tar xvjf
linux-source-2.6.15.tar.bz2

04 cd linux-source-2.6.15

05 sudo cp /boot/
config-2.6.15-26-686 .config

06 sudo make prepare

07 cd /usr/src

08 tar xvzf
truecrypt-4.2a-source-code.
tar.gz

09 cd truecrypt-4.2a/Linux

10 sudo ./build.sh

11 sudo ./install.sh

Listing 2: Truecrypt
on Ubuntu

Depending on your system performance,
the installation procedure can take any-
thing from a couple of minutes to several
hours. The build press launched in Line 10
of Listing 2 builds the whole kernel, with-
out a good reason to do so, before going
on to build the truecrypt module and ac-
companying tools. If you do not have the
gawk package (and this is the case on
Ubuntu, for example), the whole process
terminates with an error message.

Admins can simply say yes to the first
three prompts in the installation script
(launched in Line 11 of Listing 2). If you
also allow non-admin users to run
Truecrypt by saying yes again, the in-
staller sets the UID bit on the binary,
opening up a potential attack vector. This
said, the programming is pretty clean,
and the risk is thus calculable.

You can run truecrypt --create to create a
new Truecrypt-encrypted filesystem. If
you do not supply all the required op-
tions at the command line, the tool will
prompt you for them interactively. The

example in Listing 3 creates a container
file below /home/chris/truecrypt/test
(Lines 1 and 2) and formats the container
with a FAT filesystem (Line 3). Truecrypt
uses this smallest common denominator
for the data exchange between Windows
and Linux systems by default. If you pre-
fer not to use FAT, you can set the filesys-
tem for the container at a later stage.

If you opt for file-based encryption, the
tool will additionally prompt you to spec-
ify the container size (100 MBytes, Line
4), before going on to offer a selection of
hash and encryption algorithms.
RIPEMD-160, and AES with a key length
of 256 bits are the defaults.

In contrast to other crypto systems,
Truecrypt uses LRW tweakable narrow-
block encryption (see the “LRW” box).
Although Truecrypt supports traditional,
but less secure, Cipher Block Chaining
(CBC), the developers sensibly advise
against its use.

The tool then prompts you for a pass-
word; in addition to – or instead of – this,

Truecrypt can optionally use key files. To
use a file only, leave the password blank.
Truecrypt collects mouse movements
and keyboard input to generate entropy,
instead of relying on /dev/random. Based
on the random value, Truecrypt over-
writes the whole container with a
pseudo-random sequence of numbers to
prevent attempts to guess the files
stored in the container.

The truecrypt --dismount /mnt command
handles dismounting the filesystem. It is
far more difficult to automatically mount
Truecrypt containers at system boot time
than with DM-Crypt, for example. You
would need to write your own scripts to
encrypt the /home directory. Pamscript
[15] could be useful here to run scripts
during PAM (Pluggable Authentication
Modules) authentication. Truecrypt suf-
fers from a fundamental problem com-
mon to external kernel modules: if the
external module does not work following
a kernel update, users have no way to ac-
cess their data.

Getting Started with Truecrypt

Figure 3: Encryption with a userspace filesystem: Glibc passes

read and write operations through to the kernel, or to its VFS

(Virtual filesystem) to be more precise. The FUSE module com-

municates with its userspace counterpart.

VFS
(Virtual

File
System)

glibc glibc

libfuse

EncFS /
CryptoFS

Read /
Write operation

FUSE

XFS

Encrypted FilesystemsCOVER STORY

26 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

Linux users have to make do with a
fairly terse manpage.

Users are more likely to be put off by
the complicated usage, starting with the

installation. The project homepage has a
number of prebuilt packages for com-
mon Linux distributions, but most of
them fail if you update your kernel. Even
though the changelog claims that there

is no need to rebuild within a kernel ver-
sion, some manual steps are needed on
Ubuntu 6.06, for example.

From a cryptographic point of view,
Truecrypt is the most sophisticated and

01 Volume type: 1

02 Enter file or device name for
new volume: /home/chris/
truecrypt/test

03 Filesystem: FAT

04 Enter volume size (bytes -
size/sizeK/sizeM/sizeG): 100M

05 Hash algorithm: 1

06 Encryption algorithm: 1

07 Enter password for new volume
'/home/chris/truecrypt/test':

08 Re-enter password:

09 Enter keyfile path [none]:

10

 11 truecrypt /home/chris/
truecrypt/test /mnt

Listing 3: Creating a
Truecrypt-FS The introduction of userspace-based file-

systems, LUFS (Linux Userland Filesys-
tem [16]), and the more recent FUSE
(Filesystem in Userspace, [17]) led to a
number of interesting spin-off projects
that would never have made the kernel
on their own merit. For example, Gmail-
FS [18] and FTPFS [19] give users the
ability to bind Google’s mail service or
an FTP server as if it were a local direc-
tory. It seems logical to integrate encryp-
tion functionality in a similar way (Figure
3). There are advantages this offers com-
pared with kernel-based solutions:

• Filesystems that reside in userspace
act as filters and make it easier to store
data securely in places that are not
under a user’s control. For example, a
root server operator could store en-
crypted data on a provider-side FTP

server dedicated to backup processes.

• Userspace filesystems work at the file
level. In contrast to their less flexible
container-based counterparts, they
use the existing filesystem and adapt
to its size.

• As encrypted files and the accompa-
nying metadata are stored directly on
the filesystem, it is easy for backup
tools to detect modified files and to
process only these files.

At the same time, the visibility of the
metadata is the biggest drawback to this
approach. A user with access to the file-
system automatically knows the number
of encrypted files, their permissions, and
their approximate size (to 8 or 16 bytes).
Depending on the system and configura-
tion, even the cleartext filenames could
be visible.

Filesystems in Userspace

advertisement

COVER STORYEncrypted Filesystems

27ISSUE 72 NOVEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

professional program of all our test can-
didates. It comes with useful documen-
tation, and it is based on standards such
as the PBKDF2 key generation function,
as well as LRW mode (see the box titled
“LRW”) for sector-based encryption.
Truecrypt is the only program with safe
defaults, and the software checks func-
tion return values, alerting the user in
case of error.

The only thing that really bugged us
about Truecrypt was the fact that the de-
velopers stick to the Rumpelstiltskin se-
curity model and disguise the container
as a collection of digital garbage. They
even take this Rumpelstiltskin approach
so far as to have Truecrypt launch a
brute force attack against the volume
header in an attempt to access the data
in the container.

Although the password is known,
Truecrypt has to try out all hash and en-
cryption algorithms until it finds usable
data. This left us with an unnecessarily
ambivalent impression: the program is
convincing, and the programmers really
know what they are doing. On the other
hand, the developers are fairly bull-
headed when it comes to controversial
security properties.

Crypto-FS
Crypto-FS [20] is the simplest of the
crypto filesystems we investigated.

Crypto-FS is a userspace filesystem
based on LUFS, but now it also runs on
FUSE. (See the box titled “Filesystems in
Userspace.”) As none of the major distri-
butions has a software package for
Crypto-FS at the time of this writing,
some manual steps are required. A num-
ber of dependencies need to be fulfilled:
developer packages for FUSE or LUFS,
Libgcrypt [21] version 1.1.44 or newer,
and Glib [22] version 2.6 or newer.

Following the standard ./configure &&
make && make install, you might like to
adapt the sample cryptofs.conf configura-
tion file provided with the distribution to
your own needs, and store it as .cryptofs
in the directory where you will be stor-
ing the encrypted files later. The first
time you do this, Crypto-FS will prompt
you for a password. There are two ways
to launch the tool: in typical FUSE fash-
ion using a separate binary titled cryptofs
or using the LUFS module with lufs-
mount:

cryptofs -r U
/home/chris/.cryptofs U
/home/chris/cryptofs
lufsmount cryptofs:U
//home/chris/.cryptofs U
/home/chris/cryptofs

The absolute pathname is vital, as
mount will point to a black hole other-

wise. To give potential attackers as little
information as possible about the en-
crypted files, Crypto-FS runs a Base-64
cipher against the filenames before stor-
ing them. However, the file size is still
visible.

Crypto-FS encrypts individual files
with a user-selectable cipher, typically
AES in CBC mode. The program has its
own special approach to generating the
initialization vector. After converting the
user password to an encryption key, it
ciphers a buffer with null bytes to derive
n IV values. For every nth file block,

LRW encryption mode ([12], named after
its inventors Liskov, Rivest, and Wagner)
is a tweakable block cipher, or to be more
precise, a tweakable narrow block cipher.
It resolves some of the issues that ac-
company CBC mode, without the over-
head that comes with tweakable wide
block ciphers, and also without patent is-
sues. LRW does not produce much more
overhead than CBC, and the algorithm is
suitable for parallel processing on hard-
ware.

In addition to an encryption key, LRW ex-
pects a tweak value (other crypto opera-
tions refer to comparable values as
salts). Just like a salt, the tweak does not
need to be secret. It simply ensures that
the ciphertext is different for each tweak
value, even if the cleartext is identical. It
thus converts a single block cipher into a
whole family of independent block ci-
phers. For hard disk encryption, it makes
sense to use the sector number and posi-
tion of the AES block within the sector as

the tweak value. This makes it unique for
each AES block.

While CBC allows encrypted blocks to be
moved to a different position without
comprising the ability to decipher,
copy&paste attacks on LRW are doomed
to failure. Encrypting with one tweak and
decrypting with another just gives you
garbage.

The tweak is usually calculated as the
sector number times 32, plus the index
within the sector. The factor of 32 is de-
rived by dividing 512 (the number of
bytes per sector) by 16 (bytes per AES
block). Put simply, the tweak is the AES
block number, counting from the start of
the encrypted device [13]. Those of you
who are familiar with AES from other
contexts will be aware of a practical
problem with draft standard LRW mode:
years ago, the 16 AES candidates had six
variant orders for the 128 bits of input
and output. LRW rejoins the chaos. AES-
GCM encryption mode (Galois/ Counter

Mode [14], used in the 802.11 WLAN
standard) and LRW interpret the bit and
byte orders in the block differently (Big-
Endian and Little-Endian).

The computationally expensive result of
this organizational mishap: GCM inter-
prets the data as Little-Endian, whereas
LRW assumes the data to be Big-Endian,
and thus has to invert the order of the
128 bits in the block. As GCM is fairly
widespread, in WLAN hardware for ex-
ample, these two modes are mutually
exclusive to a greater extent. It remains
to be seen which mode will win at the
end of the day. Of the test candidates for
this article, only Truecrypt uses LRW
mode.

While working on Cryptsetup-LUKS for
DM-Crypt, Clemens Fruhwirth wrote a
LRW patch [7], and attempted to have it
accepted into the kernel early in 2005.
Unfortunately, this didn’t work out, due
to technical conflicts with memory man-
agement.

LRW

01 Directory "/home/chris/.
encfs" does not exist, create
(y,n)?

02 Directory "/home/chris/encfs"
does not exist, create (y,n)?

03 Creating new encrypted volume.

04 Please choose from one of the
following options:

05 enter "x" for expert
configuration mode,

06 enter "p" for pre-configured
paranoia mode,

07 anything else, or an empty
line will select standard
mode.

Listing 4: Enc-FS

Encrypted FilesystemsCOVER STORY

28 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

Crypto-FS uses the IV with
the number n. As the number
of file blocks will easily ex-
ceed n in practical applica-
tions, the filesystems uses
each IV multiple times – a
capital error in cryptography.

The developers are happy
to use a single call to a hash
function, typically SHA-1, to
transform the password into
a key, and they even do
it without a salt. This makes
the program susceptible to
dictionary attacks. To top
this, the program does not
check function return values.
If a function that processes
keys or encrypts data hap-
pens to fail, Crypto-FS just
goes on working with a blank
key, or it simply passes the
cleartext data.

Enc-FS
Enc-FS [23] is another user-
space filesystem based on the
modern FUSE (Filesystem in
Userspace, [17]), which be-
came a part of the default
kernel with the Linux 2.6.14
release. Current Enc-FS ver-
sions need at least FUSE 2.5
and Rlog [24]. Enc-FS relies
on OpenSSL for encryption
purposes.

Basic use is really simple.
When you give the encfs

~/.encfs ~/encfs command,
the program prompts you to
supply the options shown in
Listing 4. If one of the direc-
tories or both are missing,
Enc-FS will create them for
you (Lines 1 and 2). When
run for the first time, the sys-
tem creates a .encfs5 file in
the source directory with the
information required to en-
crypt the files stored in this
directory. When you back up
your data, make sure you in-
clude this file.

Enc-FS offers the options of
operating in a standard mode
and a paranoid mode. Stan-
dard mode uses the Blowfish
algorithm with a key length
of 160 bits and encrypts file
names. The software pro-
cesses 512 byte blocks during
the encryption procedure,
links the initialization vec-
tors, and initializes the file
headers separately.

Paranoid mode promises
more security by using AES
with a block size of 256 bits.
In addition to the steps per-
formed by standard mode,
paranoid Enc-FS stores every
block with a checksum to de-
tect modifications to the data.
In addition to this checksum
feature, the filename is in-
cluded in the initialization

01 void CipherV3::randomize(unsigned char *buf, int
len) const

02 {

03 memset(buf, 0, len);

04 if(RAND_bytes(buf, len) == 0)

05 {

06 char errStr[120];

07 unsigned long errVal = 0;

08 if((errVal = ERR_get_error()) != 0)

09 {

10 rWarning("openssl error: %s", ERR_
error_string(errVal, errStr));

11 }

12 }

13 }

Listing 5: Enc-FS Code

advertisement

COVER STORYEncrypted Filesystems

29ISSUE 72 NOVEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

vector for the content. Renaming a file
thus leads to complete re-encryption.
This process breaks hardlinks, causing
problems for programs such as Mutt or
Procmail.

In addition to this, Enc-FS has an ex-
pert mode that allows users to select
their own settings from a choice of all
OpenSSL algorithms. If you prefer to
leave filenames in the clear, the program
gives you the option to do so.

In contrast to Crypto-FS, Enc-FS has a
number of useful functions that make
the system easier or safer to use. An Enc-
FS mount can be unmounted automati-
cally after a pre-defined period of time.
This is a very useful option in combina-
tion with PAM integration [25]. And Enc-
FS can hold sway with its stable mates
with respect to choice of platform: ver-
sion 1.3 or newer of the software is
available for native FreeBSD, and there
is a Windows port at [26].

Enc-FS encrypts each file with a block
cipher, such as AES in CBC mode. How-
ever, due to a programming error, the
software uses CFB (Cipher Feedback)
rather than CBC (Cipher Block Chain-
ing). Each 512-byte sector contains 504
bytes of data and an 8-byte HMAC
(hashed MAC) of the cleartext.

Instead of removing the HMAC, Enc-
FS Xors all the bytes. This value is also
used as the initialization vector. If a sin-
gle bit in the sector cleartext changes,
the IV and therefore the whole enci-
phered sector change, too.

Enc-FS protects filenames by first en-
crypting them and then storing a Base-
64 encoded version. Again, the program
uses an HMAC derived from the file-

name as the IV. To prevent files of the
same name returning identical cipher-
text, Enc-FS uses the absolute pathname
to calculate the MAC.

The encryption mode is a do-it-your-
self complex. The program starts by Xor-
ing each byte with the following byte. If
the sector size is the same as the encryp-
tion algorithm block size, Enc-FS then
encrypts the whole sector in CBC mode.
If not, it uses CFB. This looks like a pro-
gramming error, as the securer CBC
would be preferable if the volume of
data is an integral multiple of the block
size.

The sector is always going to be bigger
than an encryption block, and thus CBC
is never used. Enc-FS then goes on to re-
verse the order of the bytes in every 64
byte section. Finally, it goes through an-
other round of Xor and encryption oper-
ations. This next round is obviously de-
signed to achieve the same data masking
effect as an adjustable wide-block ci-
pher, but it does not achieve the same
cryptographic security, although the op-
erations are just as expensive in terms of
CPU usage.

Password transformation does without
a salt in Enc-FS and is limited to 16
hashing iterations. One or two thousand
iterations are considered the minimum
to prevent dictionary attacks.

Like many of its competitors, Enc-FS
hardly bothers to check function return
values. If something goes astray, the data
remain unencrypted. Even where the
code checks the return values, it makes
serious errors. Instead of ensuring that
the operation has been performed suc-
cessfully, the program defaults to assum-

[1] Loop-AES: http:// loop-aes.
sourceforge. net

[2] Util-linux: ftp:// ftp. kernel. org/ pub/
linux/ utils/ util-linux/

[3] Readme for Loop-AES: http://
loop-aes. sourceforge. net/ loop-AES.
README

[4] Crosscrypt: http:// www. scherrer. cc/
crypt/

[5] DM-Crypt: http:// www. saout. de/ misc/
dm-crypt/

[6] Cryptsetup-LUKS: http:// luks.
endorphin. org/ dm-crypt

[7] Clemens Fruhwirth and Markus
Schuster, “Secret Messages: Hard
disk encryption with DDM-Crypt,
LUKS, and cryptsetup,” Linux Maga-
zine 12/ 05, pg. 65.

[8] Free OTFE: http:// www. freeotfe. org
[9] LUKS for the Masses: http:// luks.

endorphin. org/ masses
[10] RFC 2898, “PKCS #5 – Password-

Based Cryptography Specification
Version 2.0”: http:// tools. ietf. org/
html/ rfc2898

[11] Truecrypt: http:// www. truecrypt. org
[12] Moses Liskov, Ron Rivest, David

Wagner, “Tweakable Block Ciphers”:
Proceedings of Crypto 2002,
Springer-Verlag, Lecture Notes in
Computer Science No. 2442

[13] Clement Kent (Editor), “Draft Pro-
posal for Tweakable Narrow-block
Encryption”: IEEE P1619 Working
Group, 6. August 2004

[14] Morris Dworkin, “Recommendation
for Block Cipher Modes of Operation
– Galois/ Counter Mode (GCM) for
Confidentiality and Authentication”,
NIST Special Publication 800-38D:
http:// csrc. nist. gov/ publications/
drafts/ Draft-NIST_SP800-38D_Public_
Comment. pdf

[15] Pamscript: http:// linux. bononline. nl/
linux/ pamscript/ 01/ build. html

[16] LUFS: http:// lufs. sourceforge. net/ lufs/
[17] FUSE: http:// fuse. sourceforge. net
[18] Gmail-FS: http:// richard. jones. name/

google-hacks/ gmail-filesystem/
gmail-filesystem. html

[19] FTPFS: http:// ftpfs. sourceforge. net
[20] Crypto-FS: http:// www. reboot.

animeirc. de/ cryptofs/
[21] Libgcrypt: ftp:// ftp. gnupg. org/ gcrypt/

alpha/ libgcrypt/
[22] Glib: http:// www. gtk. org
[23] Enc-FS: http:// arg0. net/ wiki/ encfs
[24] Rlog: http:// arg0. net/ wiki/ rlog
[25] Pam_encfs: http:// hollowtube. mine.

nu/ wiki/ index. php?n=Projects.
PamEncfs

[26] Enc-FS for Windows: http:// www.
crc32. net/ encfs/

[27] Bonnie++: http:// www. coker. com. au/
bonnie++/

INFO

Figure 4: The Bonnie++ benchmark shows that encryption affects read and write perfor-

mance. Loop-AES has the fastest character-wise write performance, but DM-Crypt reads

faster block-wise. Truecrypt wins on block-wise reading. Enc-FS is amazingly quick for a user-

space filesystem.

24
,5

30
,0

21
,5

33
,0

Without en-
cryption

write character-wise

write block-wise

read character-wise

read block-wise

35,0

20,0

17,5

15,0

12,5

10,0

7,5

5,0

2,5

0,0

MByte/s

22,5

25,0

27,5

30,0

32,5

15
,0

12
,5 14

,5 16
,0

Loop-AES:
(AES, 256 Bit)

13
,0

23
,0

12
,5

19
,5

DM-Crypt (AES,
CBC, 256 Bit,

SHA256-ESSIV)

9,
5 11

,0 12
,0

19
,0

Truecrypt
(AES, 256 Bit)

7,
5 9,

0

9,
0 12

,0

Crypto-FS
(AES, 256 Bit)

10
,0

13
,5

9,
5

14
,0

Enc-FS (AES,
256 Bit, IV-

Chaining, MAC
Block Headers)

Encrypted FilesystemsCOVER STORY

30 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

ing that everything has turned out okay,
and it just checks for a few of all possi-
ble error conditions. If the function fails
with an unexpected return value, Enc-FS
ignores the error and carries on regard-
less.

Speed
We asked all the crypto filesystems we
tested to show their pace in a bench-
mark. Our lab machine was an IBM
Thinkpad T40p with 1.5 GB RAM and a
7200 rpm Hitachi hard disk. The values
were measured on Ubuntu 6.06 LTS
using Bonnie++ [27] with 3-GB datas-
ets. XFS was the filesystem in the en-
crypted container in each case.

The results in Figure 4 clearly show
the performance hit that encryption
causes. Although it only achieves half
the normal throughput, the DM-Crypt
filesystem demonstrates fairly constant
read and write speeds, its strongest point
being block-wise operations. Truecrypt’s
write performance is poor; it can’t even
match the Enc-FS userspace tool for
speed. But it picks up speed again on

read operations, almost matching DM-
Crypt for pace.

Loop-AES is the fastest of the candi-
dates for character-wise read and write
operations, although it loses out to DM-
Crypt on block operations. For a user-
space filesystem Enc-FS does fairly well,
its strongest point being block-wise read
and write operations. However, smaller
files see it drop down to a similar speed
as Truecrypt, with particularly poor read
performance. The Crypto-FS filesystem
lags well behind the field, achieving just
one third of the throughput for unen-
crypted data.

Where’s the Beef?
Most crypto filesystems on Linux leave
the user with a sour taste. They trip up
over cryptographic pitfalls, and the im-
plementations are typically fairly weak
(typical errors: failure to check function
return values). Of all things, Truecrypt –
a program originally developed for Win-
dows, and one that does not integrate
well with Linux as of this writing – is the
positive exception to the rule. DM-Crypt

in the Cryptsetup LUKS variant takes
second place. Its performance is good,
and it evidences less cryptographic er-
rors than the other contenders, assuming
that the user opts for a secure configura-
tion. The default settings are unneces-
sarily insecure. And it is disappointing
that the LRW patch has not made it into
the kernel. ■

Christian Ney is a Unix and firewall
administrator with a regional airline,
and also provides security and high-
availability consultancy services to
mid-sized business. Peter Gutmann
works for the Department of Com-
puter Science at the University of
Auckland, New Zealand. He is in-
volved in designing and analyzing
cryptographic security architectures,
co-authored PGP, and has published
numerous reports and RFCs on se-
curity and encryption. Peter Gut-
mann is also the author of the
Cryptlib open source security tool-
kit, and of “Cryptographic Security
Architecture Design and Verifica-
tion” (Springer, 2003).

T
H

E
 A

U
T

H
O

R

advertisement

COVER STORYEncrypted Filesystems

