
32

Encrypting individual filesystems
is no big deal; in fact, some dis-
tributions allow you to encrypt

directories as part of the installation rou-
tine. But encrypting the home directory
on your laptop is a job half done. Dis-
honest finders can still draw conclusions
from log and configuration files. If you’re
serious about providing security through
encryption, you need to protect the
whole hard disk against spying – some-
thing that no distribution can do out of
the box.

Things start to become more complex
if you need to protect the root filesystem.
Neither Suse nor Debian Linux give
users a tool to help encrypt the root file-
system during the install (or later). That

means you’ll need to roll up your shirt
sleeves for some hands-on configuration.

In this workshop, we will start by in-
stalling a standard Linux system and
then progress to encrypting the existing
filesystems one at a time. We will finish
off by deleting the unprotected partition
and using the space for other tasks, such
as swapping out the /home directory to
an encrypted partition of its own.

Our goal is to encrypt the entire hard
disk (with the exception of the partition
table in the Master Boot Record). Be-
cause it isn’t possible to encrypt the boot
partition, we will move /boot to an exter-
nal medium – a USB stick, in this case.
To boot from the stick, we will need to
modify the BIOS and GRUB bootloader
settings. The USB stick then creates an
additional layer of security by serving as
a kind of “key” that the thief will need to
possess in order to gain access to the
laptop. If this approach seems impracti-
cal for your purposes, you can keep the
boot partition on your hard disk. How-

ever, /boot must be on an unen-
crypted partition of its own.

In this article, we’ll use DM-
Crypt [1] for our filesystem en-

cryption. DM-Crypt has been
the tool of choice for encrypt-

ing filesystems since kernel

Encrypting a home directory is easy. Encrypting your whole hard

disk – including the root filesystem – takes a little more effort.

BY MICHAEL NERB

Workshop: Encrypting hard disks with DM-Crypt and LUKS

THE WHOLE DISK

w
w

w
.p

h
oto

ca
se.co

m

DM-Crypt/ LUKSCOVER STORY

32 ISSUE 72 NOVEMBER 2006

33

2.6.4. It uses the device mapper infra-
structure [2], and it encrypts block de-
vices transparently, relying on the ker-
nel’s Crypto API to do so. Linux Unified
Key Setup (LUKS) adds some enhance-
ments, which were discussed in a previ-
ous issue of Linux Magazine [3]. The
LUKS design is implemented as the
cryptsetup-luks [4] configuration tool.

As an alternative to a fresh installa-
tion, you can modify an existing system,
assuming you have enough free space on
the disk to create a new partition for the
data you are encrypting.

Don’t worry! After you finish encrypt-
ing, the disk patches and kernel updates
should not cause any problems, and
your backup and recovery tools should
work like they always did.

Preparation
The equipment you need for this lab is a
suitable laptop, a USB stick with a ca-
pacity of about 64 Mbytes, and your fa-
vorite Linux distribution (kernel 2.6.11
or newer) – we tested Suse Linux 9.3 /
10.0 and Debian Sarge. Check the laptop
BIOS to see if it supports booting from
USB (Figure 1). Use a Live CD to ensure
that Linux supports your laptop; you
might like to take this opportunity to
erase the laptop disk (see the “Secure
data erasure” box).

For the initial install, divide the hard
disk into four partitions, as shown in
column 1 of Table 1. This configuration
puts an unencrypted version of the
Linux system on /dev/hda4. (If you pre-
fer not to boot from a USB stick, use the
alternative partitioning suggestion

shown in column 2 of
the table.)

Set up the size and
number of partitions to
match your laptop’s hard
disk and intended use –
dual or multiple boot
configurations are possi-
ble. Do not create a user
at this phase of the in-
stallation; you can do so
later on the encrypted
system.

After completing the
installation, you should
have a working Linux
system on /dev/hda4. If
you have a kernel ver-
sion older than 2.6.11

(with Debian Sarge, for example), you
will need to update the kernel now. For
the following steps, you also need the
cryptsetup-luks configuration tool.

The “Updates for Debian Sarge” box
describes how to update a Sarge system;
for Suse Linux, you just need to add
cryptsetup-luks. The LUKS homepage at
[4] has a prebuilt, statically linked ver-
sion that you can copy to /sbin/crypt-
setup-luks.

Booting from a USB-Stick
Linux typically detects USB sticks as
SCSI devices and addresses them as the
SCSI hard disk /dev/sda (unless you
have some other SCSI devices). Use fdisk
to create a partition table with at least

one partition and format the partition
(mkfs.ext2 /dev/sda1). Then do:

mount /dev/sda1 /mnt
cp -ax /boot/* /mnt

This copies the /boot directory to the
USB stick. If it does not already exist,
give the ln -s . boot command to create a
symbolic link in the /mnt directory, to
avoid a hitch with grub-install later on.

Now modify the GRUB bootloader
configuration on the USB stick: /mnt/
grub/device.map states how GRUB maps
BIOS and Linux device names; you need
an entry of (hd0) /dev/sda.

Change the entries for the BIOS device
names from (hd0,3) to (hd0,0) (this cor-
responds to /dev/sda1) in the /mnt/
grub/menu.lst configuration file:

title Suse Linux 9.3 (USB-Boot)
 kernel (hd0,0)/vmlinuz root=U
 /dev/hda4
 initrd (hd0,0)/initrd

Finally, run grub-install --root-direc-
tory=/mnt /dev/sda to install GRUB on
the Master Boot Record of your memory
stick. If everything works, you can boot
the laptop from the USB stick – to do so,
set the BIOS boot order to boot the com-
puter from external boot media first.

Encrypting Partitions
For security reasons, either change to
single user mode, or close any unneces-

Figure 1: Booting from a USB stick – every BIOS does its own

thing. Our sample BIOS refers to removable drives and a

generic storage device.

Whenever files are deleted by running
rm against the filenames, Linux simply
removes the inodes for the files from the
directory. The data stays on the disk and
can be reconstructed with a little effort.
Reformatting with mkfs will not over-
write the partition.

To permanently remove the data, you
need to actively modify the magnetiza-
tion of the sectors (in an appropriate
way). The simplest way of doing this is
with a command such as dd if=/dev/zero
of=/dev/hda. But just as a regular fall of
snow will not cover the outlines of the
landscape, some residual magnetization
will remain after overwriting a file with
null bytes. An attacker with the right kind
of equipment might be able to recon-
struct the original data.

A more time consuming approach, but
one that is ultimately far more secure,

uses /dev/urandom instead of /dev/zero.
Depending on how paranoid you are,
you can do this between three and 35
times [5] to be “fairly certain” that you
have removed the data. The shred and
wipe [7] tools will help you do so. But
you should be aware that these tools as-
sume a few basic conditions that may
not apply to RAID systems, journaling
filesystems (such as ReiserFS or Ext3), or
certain hard disk drivers and firmware
components that buffer data and per-
form multiple write operations at a sin-
gle pass.

To be absolutely safe, you would need to
destroy the hard disk and dispose of it
somewhere where it will never be found.
But you can save yourself all that trouble
by implementing the mechanisms de-
scribed in this article, and then just for-
getting the passwords.

Secure Data Erasure

COVER STORYDM-Crypt/ LUKS

33ISSUE 72 NOVEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

sary applications, stop all unnecessary
services, and shutdown any user ses-
sions.

We will be using the Linux system we
just installed to encrypt the partitions on
the laptop step by step; the partitions in
question are /dev/hda1 through /dev/
hda3. Partition /dev/hda4, which holds
the root filesystem right now, will not be
needed later. You can recycle it and cre-
ate a partition for the /home directory if
you like.

The basic steps (see the “Device Map-
per, DM-Crypt, and Cryptsetup” box) are
always the same: use cryptsetup-luks to
create a virtual block device with inte-
grated AES encryption, and map it to an
appropriate block device (on the laptop
hard disk). While doing so, you need to
enter a passphrase, which the program
will use to create a symmetric key. The
key is then used for data encryption. Fi-
nally, format the virtual block device

with a filesystem, and mount the filesys-
tem.

Warming Up
The swap partition and the /tmp direc-
tory are useful candidates for our first
experiments with cryptsetup-luks: these
filesystems contain temporary data and
are no big loss if something goes awry.

Listing 1 shows the command se-
quences for manually enabling and dis-
abling encryption for swap and /tmp.
For swap, you need to set up a virtual
block device, /dev/mapper/swap, using
cryptsetup-luks, then initialize the device
by running mkswap and enable the de-
vice by running swapon. In the same
way, create another virtual block device,
/dev/mapper/tmp, format it with the
Ext2 by running mkfs.ext2, and then
mount the device as /tmp. For Debian,
replace the cryptsetup-luks commands
with cryptsetup or create a suitable link.

In both cases, cryptsetup-luks uses
random passphrases from /dev/uran-
dom; the passphrases reside in the lap-
top’s main memory and disappear when
you power down the laptop. As nobody

knows the passphrases, the data stored
on swap and /tmp is irretrievably lost,
but this is intended. Swap contains
memory dumps and is reinitialized
whenever you boot your computer.
There are no benefits from keeping swap
readable, and there are a number of se-
curity risks. Every distribution has its
own approach to handling temporary
files. As a rule, programs should not rely
on data in /tmp surviving a reboot.

Genuinely Temporary
It makes sense to recreate these filesys-
tems every time you boot. Debian makes
this simple: just set the CRYPTDISKS_
ENABLE=Yes parameter in /etc/defaults/
cryptdisks (if it is not already set), and
add the following to /etc/crypttab:

#<target dev> <source dev>U
<key> <options>
swap /dev/hda1 /dev/urandom swap
tmp /dev/hda2 /dev/urandom tmp

You also need to modify /etc/fstab; re-
move the existing entry for swap, or
modify the entry:

/dev/mapper/swap none U
swap sw,pri=1 0 0
/dev/mapper/tmp U
/tmp ext2 defaults 0 0

Suse Linux also has an /etc/cryptotab file
– but it uses loop devices. For Suse, it
makes sense to use an init.d script to en-
able /tmp and swap. A shell script that

Boot from USB Stick Alternative: Boot from hard disk Content
– /dev/hda1 Boot partition /boot
– /dev/hda2 Extended partition
/dev/hda1 /dev/hda5 Encrypted swap partition
/dev/hda2 /dev/hda6 Encrypted filesystem /tmp
/dev/hda3 /dev/hda7 Encrypted root filesystem
/dev/hda4 /dev/hda8 Unencrypted root filesystem

(to be deleted later)

Table 1: Partitioning

To prepare Debian Sarge for encrypting
the root partition, complete the standard
installation, and then do this: add the
following Apt source (and comment out
all other sources in /etc/apt/sources.list):

deb http:U

//http.us.debian.org/debian U

unstable contrib main

Then run apt-get update and apt-get in-
stall -f to update the package database,
and do the following:

apt-get install U

yaird linux-image-2.6.17-2-686

apt-get install cryptsetup

This installs a current kernel version,
cryptsetup, and yaird, a tool for creating
initial RAM disks (like mkinitrd). (Note
that the kernel image version number
may have changed since this issue went
to press – version 2.6.17-1 was available
on the servers when we started initial
testing.) Now boot your computer with
the new kernel.

Updates for Debian Sarge

Just like loop devices, the device mapper
infrastructure [2] unhitches physical
block devices from virtual block devices
(Figure 2). This virtualization creates
an abstraction layer that is leveraged
by various applications, DM-Crypt [1]
being just one of them. DM-Crypt
transparently encrypts data passed in by
the virtual block device and stores the
data on the physical block device – and
vice-versa. The physical block device ap-
pears to contain garbage – you need to
supply the correct passphrase to mount
a filesystem via the virtual block device
to be able to use the data in a meaning-
ful way.

The cryptsetup userspace tool is re-
quired to configure DM-Crypt; the virtual
block devices are set up in the /dev/map-
per/ directory.

cryptsetup-luks is an extension of crypt-
setup, and offers enhancements, which
we discussed in greater detail in [3] – but
to summarize:

• A random key is used for data encryp-
tion; the key is stored in the LUKS
header of the partition – encrypted
with the key generated from the pass-
phrase. This gives administrators the
ability to change the passphrase with-
out needing to re-encrypt the whole
partition.

• Use of salting and stretching makes
dictionary attacks on users’ pass-
phrases more difficult.

• ESSIV (Encrypted Salt Sector IV) makes
watermarking attacks in Cipher Block
Chaining mode more difficult; this fea-
ture was introduced with kernel 2.6.11.

Device-Mapper, DM-Crypt, and Cryptsetup

DM-Crypt/ LUKSCOVER STORY

34 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

does this for you (cryptfs), and which is
based on [8], is available from the Linux
Magazine website [9]. After download-
ing the script (to /etc/init.d/) create sym-
bolic links in /etc/rcX.d to call the script
in the required runlevels. Finally, delete
the line for the previous, unencrypted
swap partition from /etc/fstab.

Root Management
Let’s reboot, just to make sure that Linux
creates and enables the filesystems. If
everything works out, we can move on
to our major task, encrypting the root
filesystem.

In contrast to /tmp and swap, the root
filesystem is permament: that is, it is not
recreated whenever you reboot. Root is
created once and mounted at boot time.
We need some extended LUKS function-
ality (from cryptsetup-luks) at this point,
and the procedure is slightly different:

The following parameters create a
LUKS header on /dev/hda3; LUKS uses
the AES encryption algorithm with a key
length of 256 bits and sets a passphrase:

cryptseup-luks -c U
aes-cbc-essiv:sha256 -y -s U
256 luksFormat /dev/hda3

Now create a virtual block device, /dev/
mapper/dm-root, which will map to the /
dev/hda3 partition. cryptsetup will
prompt you for the passphrase you just
specified. Then go on to format the vir-
tual block device (Ext3 format in our ex-
ample) and mount the device:

cryptsetup-luks luksOpen U
/dev/hda3 dm-root
mkfs.ext3 /dev/mapper/dm-root
mount /dev/mapper/dm-root /mnt

The newly en-
crypted root file-
system is now
mounted below
/mnt, and it is still
empty. You will
need to insert
your bootable
memory stick for
the following
steps. Copy the
complete installa-
tion from the
/dev/hda4 parti-
tion to /mnt – this
process encrypts

and stores the data on /dev/hda3. Do not
copy the /boot, /lost+found, /proc, /sys,
/tmp, and /mnt directories. The copy
command looks like this:

cd /; cp -ax bin dev etc U
home lib media opt root U
sbin usr var /mnt/

The copy can take awhile, as two to
three Gbytes need to be run through the
encryption layer. This leaves you with an
image of the root filesystem from /dev/
hda4 on /dev/hda3. You can manually
umount (umount /mnt; cryptsetup-luks
luksClose dm-root), and remount (crypt-
setup-luks luksOpen /dev/hda3 dm-root;
mount /dev/mapper/dm-root /mnt) now.

Now use chroot to work with the en-
crypted system. Start by setting up the
missing mountpoints, and mount the
memory stick as /boot.

chroot /mnt
mkdir -p /boot /proc U
/sys /tmp /mnt
mount -t proc proc /proc
mount -t sysfs sysfs /sys
mount /dev/sda1 /boot

If you attempted to boot from the mem-
ory stick with the root filesystem on
/dev/hda3, or /dev/mapper/dm-root,
would fail right now, as the init program
(which is part of initrd) would not be
able to handle the root filesystem in ei-
ther case: partition /dev/hda3 would
seem to contain garbage, and the virtual
device, /dev/mapper/dm-root, does not
exist at this point.

The Whole Enchilada
To let Linux boot from the encrypted
root filesystem, we need to modify initrd
as follows:

The cryptsetup-luks program, and the
required kernel modules, must be refer-
enced in initrd.

init has to load the kernel modules,
and mount the virtual block device,
/dev/mapper/dm-root, as the root file-
system.

01 # swapoff -a

02 # cryptsetup-luks -s 256 -d /
dev/urandom create swap /dev/
hda1

03 # ls -l /dev/mapper/

04 total 124

05 crw------- 1 root root 10,
63 Apr 3 2006 control

06 brw-r----- 1 root root 253,
0 Apr 2 23:53 swap

07 # mkswap /dev/mapper/swap

08 Setting up swapspace version
1, size = 1019895 kB

09 # swapon /dev/mapper/swap

10 # cat /proc/swaps

11 Filename Type
Size Used Priority

12 /dev/mapper/swap partition
995988 0 -3

13 # swapoff /dev/mapper/swap

14 # cryptsetup-luks remove swap

15 # cat /proc/swaps

16 #

17 # cryptsetup-luks -s 256 -d /
dev/urandom create tmp /dev/
hda2

18 # mkfs.ext2 /dev/mapper/tmp

19 mke2fs 1.36 (05-Feb-2005)

20 [...]

21 # mount /dev/mapper/tmp /tmp

22 # ls -l /tmp/

23 total 17

24 drwx------ 2 root root 12288
Apr 2 23:55 lost+found

25 # umount /tmp

26 # cryptsetup-luks remove tmp

27 # ls -l /dev/mapper/

28 total 124

29 crw------- 1 root root 10,
63 Apr 3 2006 control

Listing 1: Creating Swap and /tmp

Figure 2: Multiple layered file access – LUKS encryption adds

another layer, which resides between the logical filesystem and the

hardware (hard disk access).

Hard disk

Application layer

Filesystem layer

Hardware layer

DM-Crypt

Ext 2

encrypted

decrypted

Encryption layer

Physical block device:

Logical block device:

Ke
rn

el
 la

ye
r

/dev/mapper/tmp

/dev/hda2

Mountpoint:
/tmp

COVER STORYDM-Crypt/ LUKS

35ISSUE 72 NOVEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

Depending on the integration status of
cryptsetup for your distribution, there are
different approaches to doing this.

Debian Ramdisk
Debian Sarge has some fairly useful sup-
port here. Add the aes-i586 and sha256
modules to /etc/mkinitd/modules (each
in a separate line); add the following line
to the existing /etc/crypttab file:

dm-root /dev/hda3 none U
luks,cipher=aes-cbc-essiv:sha256

In a similar way, change the root file-
system in /etc/fstab to point to /dev/
mapper/dm-root:

/dev/mapper/dm-root / U
ext3 defaults 0 1

Then run yaird -o /boot/initrd to create a
working initrd on the memory stick.
yaird (yet another initrd) replaces the
standard mkinitrd tool, which can’t han-
dle encrypted root filesystems in the
Debian version.

Suse Ramdisk
For Suse Linux, you'll need to add the
required kernel modules dm-mod,
dm-crypt, aes-i586, sha256, and ext3,
using the INITRD_MODULES parameter
to the /etc/sysconfig/kernel file. (The
module names must be separated by
blanks.)

More changes are required to the
/sbin/mkinitrd program: you might like
to create a backup copy before you con-
tinue. In the mkinitrd_kernel function,
look for the lines that copy /sbin/insmod
to the ramdisk; depending on your Suse
version, they may look slightly different.
For Suse Linux 10.1 the lines look like:

if ! cp_bin $initrd_insmod U
$tmp_mnt/sbin/insmod 2>U
/dev/null ; then
 error 5 "no static insmod"
fi

Add the following two lines immediately
below this:

cp_bin /sbin/cryptsetup-luks U
$tmp_mnt/sbin/ 2>U
/dev/null \ || error 5 U
"no static cryptsetup-luks"

In the udev_discover_root function, add
the following as the first command:

| echo "Setting up LUKS U
device $rootdev. U
Provide pass phrase now."
| /sbin/cryptsetup-luks U
luksOpen /dev/hda3 dm-root

Then you just need to change the entry
for the root filesystem to /dev/mapper/
dm-root (for the ext3 filesystem) in /etc/
fstab. Finally, give the /sbin/mkinitrd -o

/boot/initrd command to create a new
initial RAM disk on the memory stick.

The Tension Mounts
Before rebooting, modify the /boot/grub/
menu.lst file on your memory stick.
Change the root kernel parameter in the
menu entry that launches the Linux sys-
tem to point to the virtual block device,
/dev/mapper/dm-root. You also need to
modify the initrd entry (/boot/initrd).
A typical entry will look like this:

title Suse Linux 10.0 U
(USB-Boot, Encrypted Root)
 kernel (hd0,0)/vmlinuz U
root=/dev/mapper/dm-root
 initrd (hd0,0)/initrd

Reboot the laptop. Make sure you have
set USB as the default boot device in the
BIOS boot order. cryptsetup-luks will
now prompt you for the passphrase for
the root filesystem, and assuming that
you provide the correct password, boot
to the login screen. Calling mount re-
moves any trace of doubt (Figure 3). If
this does not work, try booting without
the memory stick: you still have the un-
encrypted Linux system on the hard

Encrypting your laptop hard disk is just
one layer in an all-encompassing secu-
rity policy – and it is no replacement for a
security policy, as it only protects the
data while the computer is switched off.
If you lose your laptop after entering the
correct pass phrases and with a user ses-
sion running on the Linux system, an at-
tacker would have the same access as to
a completely unprotected machine. This
warning also applies to threats from the
Internet, assuming the laptop has an In-
ternet connection. Malware has unre-
stricted access to your data once it gains
access to the system.

In other words, this workshop cannot
give you absolute security; but following
these rules will keep your laptop as se-
cure as possible:

• Store the laptop and memory stick
separately.

• Configure a power-on password and a

supervisor password in your laptop’s
BIOS; only allow a USB stick as the
boot medium.

• Use robust passwords, and change
them at regular intervals.

• Do not work with root privileges if you
can avoid doing so.

• Use a restrictive (personal) firewall
configuration.

• Use at least one virus scanner with
current virus signatures.

• Set up a password-protected screen-
saver, and let the screensaver enable
automatically.

• Check your logfiles for suspicious en-
tries at regular intervals.

• Check for and install security patches
and updates for any software you use.

• Back up your data at regular intervals;
keep the backups in a safe place.

Security 101

[1] DM-Crypt:
http:// www. saout. de/ misc/ dm-crypt

[2] Device Mapper Resource Page:
http:// sources. redhat. com/ dm/

[3] “Secret Messages: Hard disk encryp-
tion with DDM-Crypt, LUKS, and
cryptsetup,” by Clemens Fruhwirth
and Markus Schuster, Linux Magazine
12/ 05, pg. 65.

[4] Linux Unified Key Setup (LUKS):
http:// luks. endorphin. org/ dm-crypt

[5] Peter Gutmann, “Secure Deletion of
Data from Magnetic and Solid-State
Memory”: http:// www. cs. auckland. ac.
nz/ ~pgut001/ pubs/ secure_del. html

[6] Suspend 2: http:// www. suspend2. net

[7] Wipe – Secure File Deletion:
http:// wipe. sourceforge. net

[8] Luksopen script on the DM-Crypt
Wiki: http:// www. saout. de/ tikiwiki/
tiki-index. php?page=luksopen

[9] Shell script cryptfs: http:// www.
linux-magazine. com/ Magazine/
Downloads/ 72/ DM-Crypt

[10] Clemens Fruhwirth: “New Methods
in Hard Disk Encryption,”
http:// clemens. endorphin. org/
nmihde/ nmihde-A4-ds. pdf

INFO

DM-Crypt/ LUKSCOVER STORY

36 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

disk, and you can start troubleshooting
from there.

Fine Tuning
If all of this works out, you no longer
need the unencrypted root filesystem on
/dev/hda4. Delete the data on the parti-
tion and use cryptsetup-luks to set up an-
other encrypted filesystem called /dev/
mapper/dm-home. Format the partition,
and mount it as /home. Then create any

users you need;
their home direc-
tories are auto-
matically en-
crypted on /dev/
hda4.

One downside
to this is that en-
crypted swap and
suspend to disk
are mutually ex-
clusive – make
sure to disable
the latter for this
reason (if it ex-
ists, remove the

kernel parameter resume=/dev/hda1
from /grub/menu.lst.) Suspend2 [6] is an
alternative that supports suspend to disk
with an encrypted swap partition; how-
ever, this means patching and compling
the vanilla kernel.

You will not need the memory stick
while the laptop is running, however, it
is essential to plug in the stick for kernel
updates, as mkinitrd or yaird will want
to install the new initrd on the stick. To

be on the safe side, backup the memory
stick before you update the kernel, or
add an entry to the previous, working
system to your GRUB configuration. Ker-
nel 2.6.13 saw a few modifications to
udev, and they may prevent the initrd
you created from performing as desired.
yaird does not share this problem. To be
really safe, create a live CD with LUKS
support. You can use the CD to manually
mount and back up encrypted partions.

Suse users need to be careful if YaST
updates the mkinitrd package. Back up
the LUKS changes to the /sbin/mkinitrd
script and compare them with the new
version after updating mkinitrd.

Conclusions
During this workshop, we have en-
crypted the whole laptop hard disk
except for the Master Boot Record.
You need the memory stick to boot.
This gives road warriors a high degree
of passive security. But you should still
be aware of common protective and
security measures (see the “Security
101” box). ■

Figure 3: After completing the operations, you should see three

encrypted filesystems below /dev/ mapper and in the mount table. To

remove the remaining cleartext information from your disk, create an

encrypted /home on hda4.

advertisement

COVER STORYDM-Crypt/ LUKS

