
75

The only way to say for sure if a
web application will work after
modifying the code is to try all

the functions in a browser. This means
opening every single page, pressing
every single button, and filling out every
single text box. And you have to go
through this multiple times to check out
every possible success or error scenario.

The people from quality assurance
would probably not look forward to the
prospect of performing these monoto-
nous tests manually. At the same time,
this approach leaves you open to human
error. We need an automatic test.

Testing Javascript
Simple web applications can be tested
with screen scrapers such as the WWW::
Mechanize CPAN module, but the tool
trips up over Javascript. Although there
are plenty of Javascript implementations
with matching Perl APIs, a satisfactory
solution for the interaction between the
Javascript engine and the browser DOM
(Document Object Model) has not been
forthcoming thus far. This field is partic-
ularly complex, as Javascript manipu-
lates the HTML in loaded pages, triggers
repeating actions, opens new windows,

or retrieves data from servers, and in-
jects it into the page. In addition to this,
there are pitfalls in the ways various
browsers implement the DOM.

Now Thoughtworks has released an
open source project titled Selenium [2]
that gives programmers a simple solu-
tion to the problem. It feeds Javascript
code to the browser, thus giving pro-
grammers the ability to
remotely control the
browser and automate
tests. To illustrate how
to automate tests with
Selenium, Figure 1
shows a simple web
form that accepts user
comments. Users supply
their email addresses
along with the comment
to allow the webmaster
to respond.

To prevent the email
field from remaining
blank or containing the

wrong input, the page’s HTML contains
a Javascript program that checks the
input when the user presses the Send
button. If the script discovers an error,
instead of sending the user’s comment
to the server, the browser pops up a
warning dialog. If the input is a syntacti-
cally valid email address, the data gets
transmitted to the ACTION URL, which

REMOTELY
CONTROLLED
BROWSER

Automatic regression tests with Selenium

REMOTELY
CONTROLLED
BROWSER

w
w

w
.sxc.h

u

Figure 1: The web form we will be testing accepts an email

address and checks the input for validity.

Testing complex web applications does not necessarily mean invest-

ing in expensive, proprietary tools such as Test Director or Silk

Performer. Selenium is for free; it can remotely control any major

browser, and it is programmable in Perl. BY MICHAEL SCHILLI

PROGRAMMINGPerl: Web Regression Test

75ISSUE 72 NOVEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

is the CGI script /cgi/feedback.cgi on the
web server. It sends back a page contain-
ing a message of “Thanks for your feed-
back!” to indicate success. We want the
automated test to verify both the error
and the success case; both the warning
dialog, and the success message need to
be caught and compared to a canned
version to ensure the web application is
working properly.

Listing 1 shows a test script, email-
check, which opens up a connection to
the Selenium server. The start() com-

mand tells the server
to open a Firefox
browser in a separate
session. open() then
tells the server to load
the HTML page shown
in Figure 1 from the
web server; this is the
page with the Javas-
cript code for checking
the email address.

A Script Types
and Clicks
The type() method simulates a user typ-
ing text, and expects the name of the
<INPUT> field in a HTML form, along
with the input text as parameters. In the
first test case (Line 22 ff.), WWW::
Selenium writes a string of abcde to the
form’s email field, identified by the
name attribute from (Figure 2). The
click() method is then called with the
name of the submit button as an argu-
ment (send) to simulate a click on the
button.

As the address string does not contain
an @ or a dot, the input can’t be a valid
email address – this causes the web page
to display the warning dialog. get_alert()
catches the dialog in Line 30, and re-
turns the error message it finds dis-
played. For test purposes, emailcheck
logs the text string it found. Figure 3
shows the debug output from the script.

In the second test case (see Line 33),
the simulator writes a string of

abcde@foo.com to the email field: this is
a syntactically valid address. After the
click(), the simulator waits for up to 50
seconds (50000 milliseconds) for the
server’s response page to load (wait_for_
page_to_load()). get_body_text() then
reads the result, and outputs the string.
Finally, stop() closes the browser opened
previously by start().

Tons of Tests
As Selenium scripts are mainly used for
regression tests, the CPAN module Test::
WWW::Selenium adds the Test Anything
Protocol (TAP, see [4]) to the Selenium
client. Scripts that create output in this
format can be combined using modules
such as Test::Harness to steadily expand-
ing regression test suites that are easy to
run, and return neatly formatted results.

Test::WWW::Selenium extends the
WWW::Selenium class, adding a number
of commands which in turn output other
Selenium commands, and check if they

01 #!/usr/bin/perl -w

02 use WWW::Selenium;

03 use Log::Log4perl qw(:easy);

04 Log::Log4perl->easy_init(

05 $DEBUG);

06

 07 my $url =

08 "http://perlmeister.com";

09

 10 my $sel = WWW::Selenium->new(

11 host => "localhost",

12 port => 4444,

13 browser => "*firefox "

14 . "$ENV{FIREFOX_HOME}" .

15 "/firefox-bin",

16 browser_url => $url,

17);

18

 19 DEBUG "Starting";

20 $sel->start();

21

 22 $sel->open(

23 "$url/test/mail.html");

24 DEBUG "Typing email";

25 $sel->type("from", 'abcde');

26

 27 DEBUG "Clicking send";

28 $sel->click("send");

29 my $alert =

30 $sel->get_alert();

31 DEBUG "alert was '$alert'";

32

 33 DEBUG "Opening";

34 $sel->open(

35 "$url/test/mail.html");

36

 37 DEBUG "Typing email";

38 $sel->type("from",

39 'abcde@foo.com');

40

 41 DEBUG "Clicking send";

42 $sel->click("send");

43 $sel->wait_for_page_to_load(

44 50000);

45

 46 my $body =

47 $sel->get_body_text();

48 DEBUG "Response was '$body'";

49

 50 $sel->stop();

Listing 1: emailcheck

Figure 3: The emailcheck test script uses Selenium to control a

Firefox browser session. It simulates the input of an invalid and

a valid email address and outputs both the content of the result-

ing error dialog and the successful server response.

Figure 2: Use HTML with JavaScript to

check if a typed email address can be

accepted.

Perl: Web Regression TestPROGRAMMING

76 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

trigger the expected response. For exam-
ple, open_ok() is used to load a website
instead of open(). According to TAP, if
the test is successful, a response of ok 1
is returned; an error returns not ok 1.

With WWW::Selenium methods such
as get_body_text() or get_title(), which
retrieve page details, you just remove the
get_, and append the test method name
from the Test::More collection. For exam-
ple, title_is($title) checks if the page title
returned by get_title() matches the string
stored in $title. And body_text_like
($regex), which derives from get_body_
text(), prints the success message, if the
returned HTML matches the regular
expression stored in $regex.

Googling Zombies
The gtest test script (Listing 2) launches
Firefox, surfs to Google, enters a string
of schilli in the search field, and presses
the Google Search button. The test cases
check if the search was successful, and if
the match list contains a string of perl-
meister. To tell the click() method which
button to press, the method normally ex-
pects the button’s name property. Alter-
natively, you can specify the click target
via Selenium’s Element Locators. Given
that Google’s search button displays
“Google Search”, here’s how to point Se-
lenium to an input form field with this
VALUE attribute:

//input[@value="Google Search"]

The WWW::Selenium POD documenta-
tion has a comprehensive list of methods
for controlling the Selenium server, and
thus the browser, via the Perl client. Se-
lenium supports the whole palette of
browser gimmicks, from opening multi-
ple popup windows, through triggering
Javascript events, to placing the text cur-
sor in form elements.

Figure 4 shows a Firefox window con-
trolled by Selenium. At the top of the
window you can see the control ele-
ments Selenium passed in; the website
to be tested is in the lower half of the
window. The zombie browser is using
default settings, this explains the empty
customizable toolbox, and the search
window is set to the default of Google,
whereas my browser uses my employer’s
search engine, of course (Figure 1). Sele-
nium creates a Firefox profile of its own
for its tests, and ignores the user prefer-

ences in the browser.
On closer inspection of the browser

URL box, you might notice that some-
thing unusual is going on. The URL
shown here, http://www.google.com/
selenium-server/..., points to a Selenium
server, which is not running on the
search giant’s site. Figure 5 explains the
mystery: Selenium puts a proxy between
the browser and the web server, which
manipulates all outgoing requests.

Two in One
The Selenium server fulfills two func-
tions at the same time. If a test script re-

quests an Internet
page, it talks to the
Selenium remote con-
trol, which passes the
request in to the
browser. But the Sele-
nium server sets the
browser up to use a
proxy, rather than
communicate directly
with the Internet.
This proxy is – you
guessed it – no one
else but the Selenium
server itself. And this
allows Selenium to in-
tercept the data the
browser sends out to
or receives from the
Internet, and to ma-
nipulate the traffic
between the two as
needed.

If the Selenium re-
mote control asks the

browser to request an URL, it attaches
some control parameters and a session
ID to the request. The browser then
sends out a request for the specified URL
via the proxy. This way, Selenium gains
control again, strips the parameters in-
tended for itself, contacts the web server
specified in the request, and retrieves the
response. Before sending it back to the
browser, the proxy adds Javascript code
to the response that trigger remote con-
trol actions in the browser, to type input
into entry fields, for example.

As an interesting implementation de-
tail, the Selenium server does not di-

Figure 4: For its tests, Selenium sets up its own browser profile.

It then tells the browser to surf to a page, while showing the

remote control features in the top half of the window.

Figure 5: The test script talks to the Selenium server, which in turn remote-controls to the

browser. Selenium’s proxy server manipulates the browser’s communication with the website.

PROGRAMMINGPerl: Web Regression Test

77ISSUE 72 NOVEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

rectly remote-control the browser. In-
stead, the browser continually asks for
new instructions due to the Javascript
code fed to it by the proxy. Effectively,
the injected Javascript allows similar
manipulations as a Firefox plugin would,
however, the Selenium method has the
advantage of being able to control
browsers by various vendors.

The Selenium remote control is writ-
ten in Java and available from [2] under
an Apache license. The Zip archive has
both the Java source code, and the .jar
archive. To start the Janus-headed
server, enter the following command:

LD_LIBRARY_PATH=/path/to/
firefox-1.5 java -jar
selenium-server.jar

Make sure that you have the dynamic li-
braries for your Firefox installation, such
as libmozjs.so, in your Firefox directory.
If you installed the browser in the stan-
dard path, there is no need to specify the
LD_LIBRARY_PATH. This also applies to
the new constructor of the WWW::Sele-
nium class in your test scripts. Instead of
specifying the long-winded installation
path, you can simply use "*firefox" as
the browser parameter, if the binary is in
your search path. In this case, you can
omit setting the FIREFOX_HOME envi-
ronment variable variable before run-
ning the test scripts.

The Selenium server listens on port
4444. The WWW::Selenium constructor

expects this information in the port pa-
rameter, which the scripts set to 4444.

Concept “Same Origin”
The security restrictions imposed on Ja-
vascript are a hindrance. Based on the
“same origin” principle, the Javascript
code in one domain can’t manipulate the
content coming from a website in an-
other domain. This is why the WWW::
Selenium class constructor uses the
browser_url parameter to store the root
URL of the website. Tests can only be
performed on the specified domain.
Scripts to test interaction between multi-
ple domains are not possible, although
an upcoming Selenium release envisages
dynamic modification of the root URL.

The project also offers a Firefox plugin
titled Selenium IDE. When launched via
the Tools menu, the plugin opens a dia-
log (Figure 6), and then goes straight to
record mode to log the actions per-
formed within the browser using Seleni-
um’s own language, Selenese. Selenium
IDE can then be used later to reproduce
the logged steps, thus giving users the
ability to define test suites. You can ex-
tract the logged data and use it for writ-
ing regression tests in Perl.

Foreign Territory
A Perl script that uses Selenium can re-
motely control browsers on other com-
puters, thus giving developers the ability
to test the compatibility of their web ap-
plications. To remotely control Micro-

soft’s Internet Explorer on Windows, just
copy the .jar file for Selenium Remote
Control to a Windows system and type:

java -jar selenium-server.jar

This assumes you have a Java environ-
ment on the Windows system. Type ip-
config at the command line of the Win-
dows computer to discover its IP ad-
dress. To run the test suite on the con-
trolling machine against Windows Inter-

net Explorer, pass the IP into the WWW::
Selenium constructor:

host => "192.168.0.70",
port => 4444,
browser => "*iexplore",

Selenium supports any popular browser
on Linux, Windows, and Mac OS X. The
Java remote control server will run on
any platform with Java support. The test
scripts will go on running on the original
Linux system. Now stop making up ex-
cuses for not testing your Web applica-
tions thoroughly and cross-platform! ■

[1] Listings for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 72/ Perl

[2] Selenium:
http:// www. openqa. org/ selenium

[3] Selenium IDE Firefox plugin:
http:// www. openqa. org/ selenium-ide

[4] Regression tests with Perl:
Michael Schilli, “Testing Tools”,
Linux Magazine 12/ 2005,
http:// www. linux-magazine. com/
issue/ 61/ Perl_Regression_Tests. pdf

INFO

01 #!/usr/bin/perl -w

02 use Test::WWW::Selenium;

03 use Test::More tests => 4;

04

 05 my $url =

06 "http://www.google.com";

07

 08 my $sel =

09 Test::WWW::Selenium->new(

10 host => "localhost",

11 port => 4444,

12 browser => "*firefox "

13 . "$ENV{FIREFOX_HOME}" .

14 "/firefox-bin",

15 browser_url => $url,

16);

17

 18 $sel->open_ok($url);

19

 20 $sel->type_ok("q", "schilli",

21 "Type query");

22

 23 $sel->click_ok(

24 '//input[@value=' .

25 '"Google Search"]',

26 "Clicking Search"

27);

28 $sel->wait_for_page_to_load(

29 5000);

30

 31 $sel->body_text_like(

32 qr/perlmeister/,

33 "perlmeister found"

34);

Listing 2: gtest

Figure 6: The Selenium IDE Firefox plugin

logs and extracts browser actions.

Perl: Web Regression TestPROGRAMMING

78 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

