
54

Whether they are on a business
trip or just traveling for plea-
sure, many users drop into

 Internet cafés to check their mail and the
logs on their web servers, or to just re-
motely update some software. A web-
mailer will handle the first of these
tasks, but Linux geeks often prefer light-
weight, console-based tools, like Mutt.

In the past, you could probably install
the missing software on the computer at
the Internet café (or example, Putty [1]
as a Windows SSH client for remote ac-
cess). However, because of the increased
virus issues, you are unlikely to find
open PCs at Internet cafés today.

Java applets that use SSH to connect
to your enterprise or home server (such
as Mindterm [2]) could be an alterna-
tive, but firewalls blocking the SSH port
(22) are usually in place.

Even forwarding the SSH port to the
HTTPS port (443) will no longer work in
many cases, as protocol analyzers nail
the lid on tight. If the client on the

HTTPS port speaks a protocol other than
HTTPS, the analyzer will just block the
connection.

Escaping the Firewall
For years, Linux lacked a tool that sup-
ported terminal services in an HTTPS
session, which you need to escape a
hardened system and log in securely on
your own server. Enter the new AJAX
(Asynchronous Javascript and XML [3])
technology with an AJAX-based solu-
tion, Ajaxterm [4].

This VT100-compatible terminal pro-
gram is based on Anyterm [5], but it is
easier to install and use. The commands
in Listing 1 let you take Ajaxterm for a
trial run.

Python Script
Ajaxterm is a Python script. It opens
port 8022 on the localhost interface and
can run immediately, but will still not let
you connect via port 443 (which is our
target here). A local login via http://

 localhost:8022 is possible. To allow this,
Ajaxterm calls /bin/ login on the server,
which gives you a terminal session in a
browser window.

Three buttons in the window provide
other functions: Color toggles color
mode on and off; GET toggles between
get and post mode (post is more secure,
and thus preferable); and Paste supports
copy & paste. If you enable it in the
browser security preferences, it allows
users to paste data from the clipboard
into the current Ajaxterm session. This
will work if Javascript access is allowed.

The opposite direction is always possi-
ble because the terminal display in the
browser is character-based. Click to tog-

w
w

w
.p

h
oto

ca
se.co

m

Public Internet access is often protected by restrictive firewalls, and

you have no chance of running SSH. However, HTTPS over port 443 is

typically permitted. Ajaxterm lets mobile users login to their home

servers. BY UDO WOLTER

Remote access despite blocked SSH ports with Ajaxterm

REMOTE PASSAGE

AjaxtermKNOW-HOW

54 ISSUE 75 FEBRUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

01 kdir -p /var/www/test; cd /
var/www/test

02 wget http://antony.lesuisse.
org/qweb/files/
Ajaxterm-0.9.tar.gz

03 tar zxvf Ajaxterm-0.9.tar.gz

04 mv Ajaxterm-0.9 ajaxterm

05 cd ajaxterm

06 ./ajaxterm.py

Listing 1: Ajaxterm
Quickstart

55

gle operating modes; a green button
shows you which modes are enabled.

Javascript Doesn’t Like
Copy & Paste
Copy & paste can simplify life, but it can
be a security hole for Javascript applica-
tions. When you try to enable this op-
tion, you get a link to a Howto [6] to en-
able it in your Firefox security settings.

Instead of launching /bin/ login, you
can pass the -c option to Ajaxterm to
launch a different program, thus en-
abling ssh-based forwarding to another
machine, for example. The port (the de-
fault is 8022) is configurable, and Ajax-
term will log activity if needed (to stan-
dard error output via the -l option).

Ajaxterm only supports connections
via the localhost interface, so you need a
web server for remote access; the listings
in this article describe how to configure
Apache version 2 or newer.

Ajax and Apache
To access Ajaxterm via the HTTPS port,
the program document recommends

external redirection using the Apache
proxy functions (Listing 2, lines 24 and
25). Figure 1 shows how the three com-
ponents cooperate: the web browser
client-side, and Apache and Ajaxterm on
the server.

If you use Apache, the higher speed
provided by get mode can be a mixed
blessing: the web server then logs every
single URL, and thus the individual key
presses. To avoid this risk, you should at
least toggle to post mode while logging
on. If you set up a connection to a third
machine after logging on over SSH, you
are not safe from Apache log entries be-
cause the Apache server will continue to
receive keyboard input in the clear.

Creating an SSL Certificate
If your Apache server does not have an
SSL certificate (in the apache.pem con-
figuration file), you will need to run
apache2-ssl-certificate to create a certifi-
cate. When you run the script with the
-new parameter, the tool prompts you for
various details, including your country
code, state, city, organizational name,

and so on. Although you
can accept the defaults,
you can enter some
meaningful data here.

The correct server
name is essential: if you
don’t enter the correct
name, your browser will
complain about the cir-
cuit when you attempt to
load something, and it
could refuse to cooperate
with the server. Self-
signed certificates have

a few disadvantages compared to CA-
issued certificates. For terminal access to
your own machine, asking the browser
to check the fingerprints should be suffi-
cient. If this is impractical, you may
need to purchase a certificate.

You will also need to talk Apache into
using the proxy module. The commands
in Listing 3 enable the SSL and proxy
modules on Debian Sarge. After complet-
ing the required steps so that your server
is responding to requests from the SSL
port, Ajaxterm access using a URL such
as https:// test. example. com/ ajaxterm/
should now work. Figure 2 shows a sam-
ple session using screen.

Logging is Bad for Your
Session
The Apache log has a tendency to grow
quickly, which is why I restricted it to
critical items in the sample configuration
(Line 20 of Listing 2); the server will
only log the source IP, time, and request
status. You will probably want to send a
keep-alive request along with the key-
board events every two seconds to pre-

Figure 1: Even if a firewall blocks SSH login over port 22 – and even if it blocks any ports except 80 (HTTP)

and 443 (HTTPS) – Ajaxterm will still let you log in remotely.

Apache Ajaxterm
8022

fork/exec

Client with
web browser

permitted: 443

blocked: 22

443

/bin/login

01 Listen 443

02 NameVirtualHost *:443

03 <VirtualHost *:443>

04 ServerName test.Domain.de

05 SSLEngine On

06 SSLCertificateKeyFile ssl/
apache.pem

07 SSLCertificateFile ssl/
apache.pem

08 # Main directory on this
virtual host

09 DocumentRoot /var/www/test

10 # Disable normal proxy

behavior of

11 # proxy module to prevent
attackers

12 # misusing the webserver as
an open proxy!

13 ProxyRequests Off

14 # Loglevel normally "warn";
that is logs

15 # too much data. To log less
to nothing,

16 # use "emerg" instead

17 LogLevel warn

18 # Even if you log, you should
not log too much

19 # just the source IP, time
and status are logged here

20 CustomLog /var/log/apache2/
ajaxterm-access.log "%a %t %s"

21 ErrorLog /var/log/apache2/
ajaxterm-error.log

22 # Now forwarding to

23 # applications running
internally

24 ProxyPass /ajaxterm/ http://
localhost:8022/

25 ProxyPassReverse /ajaxterm/
http://localhost:8022/

26 </VirtualHost>

Listing 2: Apache Configuration

KNOW-HOWAjaxterm

55ISSUE 75 FEBRUARY 2007W W W. L I N U X- M A G A Z I N E . C O M

vent the session from being terminated,
so restrict logging to a minimum: Log-
Level emerg instead of LogLevel warn
should do the trick. In the previous ex-
ample, the Loglevel is still set to warn,
which can be useful for troubleshooting
while you are setting things up.

Logging slows the terminal session
down so much that you may confuse
get and post mode. Although ls directory
listings or cat output display quickly
enough on your screen, there's a differ-
ence when compared with an SSH con-
nection. Working with vi is slow, but still
acceptable. Even if you restrict Apache
to panic events by setting LogLevel
emerg, there is a clear difference be-
tween get and post mode; you can work
more smoothly in the latter.

Getting up to Speed
Measuring the transmission speed be-
tween the browser and the web server

revealed the following results: when the
connection is idle (that is, when the
logged-on user is not pressing a key), the
transfer rate between the client and the
server is between 1 and 3 kbps, accord-
ing to ifstat.

For larger-scale output (from cat or ls),
the ratio of output to transferred data in
get mode is about 1:5; in other words,
five times the volume of data needs to
cross the connection.

In post mode, this value drops to a
value of 1:1.5 to 1:2, that is, far less data
need to travel between the server and
the browser, double the volume dis-
played on the terminal at the most. Add-
ing an Apache proxy seems to affect
Ajaxterm generally. The application re-
sponds more quickly to a localhost port
without the Apache/ SSL environment.

More Than Just a Terminal
The ability to use multiple proxy entries
to tell Ajaxterm to run different com-
mands opens up a a whole bunch of op-
tions. To do so, launch Ajaxterm multi-
ple times (on different ports), and add
the required parameters.

To use the URL https:// server. de/ top/
to display the output from top, you
would need two extra lines in your
Apache configuration:

ProxyPass /top/ U
http://localhost:8023/
ProxyPassReverse U
/top/ http://localhost:8023/

Add a matching Ajaxterm command line
(./ajaxterm.py -ctop -p8023). Figure 3 is
the output from top in a browser. The -c
parameter specifies the name of the pro-
gram to run in the terminal; -p specifies
the port. The additional -d option sends
Ajaxterm into the background.

Restricting Access
A direct link to a program (like top in
our example) can be risky; you will at
least need to prompt for the username
and password to avoid the risk of hack-
ers using shell escapes to access your
server (see the “Apache Password Pro-
tection” box). As always, adding more
obstacles will help.

Additionally, you should run Ajaxterm
on a non-privileged account created by
the administrator (groupadd ajaxterm;
useradd -g ajaxterm ajaxterm).

The Ajaxterm script supports a -u pa-
rameter, which expects a user ID as its
argument. Launching the program by

Figure 2: This terminal session uses SSL via an Apache server, which acts as a proxy, passing

requests to Ajaxterm. The program then launches /bin/ login, and the user can log in like on

the local console.

01 cd /etc/apache2/mods-enabled/

02 for i in proxy.load proxy.conf
ssl.load ssl.conf; do ln -s
../mods-available/$i .; done

03 /etc/init.d/apache2 restart

Listing 3: Enabling Proxy
and SSL

To password protect launching of pro-
grams such as top, you might like to use
the simple Apache authentication mech-
anism. If you do not password protect
the whole server, you could set up a
separate subdirectory for Ajaxterm.

You must add the following to the server
configuration (in the <VirtualHost>
block):

<Location "/top">

 AuthName "Ajaxterm"

 AuthType Basic

 AuthUserFile /etc/apache2/U

security/.htpasswd

 Require user Username

</Location>

Similarly, you will need a location block
for each proxy connection to Ajaxterm.
To create the .htpasswd password file,
run the htpasswd command as follows:

htpasswd /etc/apache2/security/U

.htpasswd Username

If the file exists, htpasswd will add an
entry for the username you pass in.

Password Protecting
Apache

AjaxtermKNOW-HOW

56 ISSUE 75 FEBRUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

entering su ajaxterm path/ajaxterm is
even better.

Secure, Thanks to One-
Time Passwords
Although SSL will encrypt the session
to add security, it does not give you any
protection against keyloggers at the op-
erating system level. The danger of Tro-
jans and other malware is at its highest
in Internet cafés, although this is a ge-
neric problem, rather than an Ajaxterm-
specific one.

The venerable Java MindTerm is just
as vulnerable to keyboard logging. One-
Time Passwords (OTPs) via OPIE can
help here – OPIE creates lists of OTPs
and is PAM-compatible; all you need to
do is add the following line at the start
of /etc/pam.d/ssh:

auth sufficient pam_opie.so

Theoretically, this should also work with
/bin/login, as /etc/pam.d/login has a
similar structure, however, SSH shows
how the parameters are passed in. The
easiest way of doing this is to call Ajax-
term like this:

./ajaxterm.py U
-c'ssh user@localhost'

Don’t forget the quotes, which you need
to escape the blank.

OPIE will now ask you for a password
with a specific ID (1999, in this case; see
Figure 4). You may take a while to locate
the passwords in a list, but it is definitely
safer than using the same password re-
peatedly on untrusted machines in Inter-
net cafés. To be successful, a keylogger
would now need to grab the password
and log on immediately.

Incidentally, this approach to SSH ac-
cess also has the ad-
vantage of not need-
ing an open SSH port
on the server’s exter-
nal interface. A poten-
tial attacker would
need to take the same
approach (via the web
interface), which
would at least foil

simple scripting attacks. Additionally,
protecting the login session via a simple
Apache password prompt (with a differ-
ent username and/ or password) would
raise the barrier.

Long-Term Processes
Programs that do not terminate automat-
ically after a certain time (such as the
top client in our example) will continue
to run on the server when the client
closes the browser window. The target
detects the end of the connection when
the browser is terminated.

As a larger number of unused but run-
ning processes could affect performance
– and is also untidy – administrators
should run a cronjob regularly to check
for orphaned processes.

Useful but Slightly Risky
Thanks to the VT100 emulation, pro-
grams like Screen and Mutt will work,
although not perfectly. The current ver-
sion (0.9) has a problem with Mutt not
refreshing the display when you press
[Ctrl]+[L]. Also, Ajaxterm will not run
in any old browser: there were no prob-
lems with Firefox and Internet Explorer;
Konqueror and Opera will display the
terminal, but errors occur. This does
not appear to be an Ajaxterm-specific
problem, as many AJAX programs have
issues with browser compatibility.

Note that programming errors in the
Ajaxterm script could lead to attackers
gaining shell access, if worst came to the
worst. After all, Ajaxterm is a Python ap-
plication and shelling out of a script is
often easier than shelling out of a binary.
Consider the potential risk before you
run Ajaxterm on your server. ■

Figure 3: Login not required: entering the correct URL, after creating additional entries in the

Apache configuration and starting more Ajaxterm processes, will display the output from the

top in the browser window.

Figure 4: One-time passwords via OPIE protect the terminal

access against keylogger attacks; the figure shows a login rou-

tine waiting for the user to enter the password for number 1999.

KNOW-HOWAjaxterm

57ISSUE 75 FEBRUARY 2007W W W. L I N U X- M A G A Z I N E . C O M

[1] Putty: http:// www. chiark. greenend.
org. uk/ ~sgtatham/ putty

[2] MindTerm: http:// www. appgate. com/
products/ 80_MindTerm

[3] Wikipedia page on AJAX:
http:// en. wikipedia. org/ wiki/ Ajax_
(programming)

[4] Ajaxterm: http:// antony. lesuisse. org/
qweb/ trac/ wiki/ AjaxTerm

[5] Anyterm, predecessor of Ajaxterm:
http:// anyterm. org

[6] Firefox howto for enabling cut &
paste for Javascript:
http:// kb. mozillazine. org/ Granting_
JavaScript_access_to_the_clipboard

INFO

