
50

Flash does not have many friends
among the open standard lobby
on the Internet. This said, if you

have no objection to using the closed-
source Flashplayer, the OpenLaszlo
framework offers a powerful, easy-to-use
platform for interactive Internet applica-
tions with sophisticated graphics. Open-
Laszlo creates Flash bytecode based on
an XML language that uses HTML-style
tags for interface design and plain Javas-
cript for the client-side application logic.
Flashplayer 7 for Linux (which has been
around for a while) is all you need to
run the applications without restrictions.

The early preview of OpenLaszlo ver-
sion 4 can convert applications to Ajax
code, and thus do without proprietary
technology. However, this does not work
for the full feature set, and thus far, only
Firefox/ Mozilla and Internet Explorer 6
have been able to render OpenLaszlo
DHMTL applications reliably.

Adobe’s Flash has a number of techni-
cal benefits compared with Ajax. Adobe

[1] claims that more than 95 percent of
all browsers have a Flash plugin in-
stalled, and you can assume that just as
many surfers disable Javascript as have
browsers that do not support Flash.
Flash technology, which supported inter-
active applications before Ajax hit the
scene, offers a number of advantages:
• Flash avoids browser compatibility is-

sues. Flashplayer will render a .swx
file identically in Firefox, Opera, Inter-
net Explorer, or other browser that
supports Mozilla or Internet Explorer
plugins. Even if Ajax applications are
based on libraries or frameworks that
introduce an abstraction layer between
content and browser capabilities,
achieving comparable robustness
means much cross-browser testing.

• Flash applications can integrate many
media types, such as animations, vec-
tor graphics, and sounds.
OpenLaszlo applications are based on

XML files. The OpenLaszlo language,
LZX, defines the user-interface design

and provides a basis for client-side appli-
cation logic, which keeps barriers low
for newcomers by integrating both
HTML and CSS elements. The language
is XML compliant and object oriented,
which means that you can reuse code

Cross-browser Internet applications with OpenLaszlo

IN A FLASH

Long before Ajax hit the scene, Flash gave developers a basis for

designing interactive web content. The OpenLaszlo framework, with

its easy-to-learn command syntax, is the foundation on which many

Flash applications build. BY PETER KREUSSEL

OpenLaszloKNOW-HOW

50 ISSUE 78 MAY 2007 W W W. L I N U X- M A G A Z I N E . C O M

01 <class name="box" height="100"

02 width="100" bgcolor="red"/>

03

04 <class name="borderedbox"
extends="box">

05 <view bgcolor="yellow"

06 x="3" y="3"

07 width="${parent.width-6}"

08 height="${parent.
height-6}"/>

09 </class>

10

11 <box/>

12 <borderedbox/>

13 <borderedbox/>

Listing 1: Object
Orientation

tim
b
ec, p

h
oto

ca
se.co

m

51

effectively for your in-
terface design. Listing
1 creates the display
shown in Figure 1.

The listing starts
with the definition of
the box and bordered-
box classes, which
can be displayed as
often as you like by
calling <classname>
in the source code.
borderedbox inherits
from the box class; at
the same time, the ap-
pearance of bordered-
box is redefined on

the basis of the inherited properties.

GUI Design
Let’s look at a couple of examples to
demonstrate how powerful the XML
interface design language is. <dat-
epicker></datepicker> is all it takes to
create a sophisticated date picker. Menus
that work reliably, no matter what
browser you choose, are not much more
complicated. Listing 2 shows the XML
code for a drop-down menu.

A multicolumn list (grid), which sorts
the entries in a column when you click
on the column header and supports edit-
ing or selecting in rows, is just a couple
of lines of code. See Listing 3. See the
OpenLaszlo homepage [2] for an over-
view of the available form elements.

Animations make life easier for
users, especially if a developer
needs to visualize a state change
from state 1 to state 2. OpenLaszlo
makes effects simple – to create a
smooth movement, all you need
do is call the animate method in
any display element. In Listing 4,
the onclick handler for the box ele-
ment takes care of this, causing a
view-type element – a square
“window” with an original height
of 20 pixels – to grow to a height
of 200 pixels in 500 milliseconds.
Clicking a second time shrinks the
box again. The instructions for
this are contained in the parame-
ter box height==20?200:20, and
the 500 parameter defines the du-
ration of the animation.

OpenLaszlo uses Javascript for
application logic. Besides global
<script> blocks, the framework

supports methods that provide specific
functionality for individual display ele-
ments or element classes. Event handlers
call Javascript code while keeping to
Javascript standards.

The following example, which moves
a button five pixels to the right when
clicked, provides an idea of how Open-
Laszlo handles user input. The button
tag defines an onclick handler, which
calls the moveHoriz() function with an
argument of 5. After adding the label
Move me, the sample code implements
the moveHoriz method, which incre-
ments the x position by the number
passed in as a parameter, again using
syntax borrowed from Javascript. The
code keeps to existing Internet stan-
dards, simplifying life for newcomers:

<button onclick=U
"moveHoriz(5);">
 Move me
 <method name="moveHoriz"U
args="moveAmount">
 this.setAttribute("x",U
this.x+moveAmount);
 </method>
</button>

The constraints in ${DOM path to input
field} offer another option for respond-
ing to user input:

<checkbox id="cbox"ßß
 text="Show Window"U

 x="10" y="10" />
<window visible=ßß
"${cbox.value}" />

The value of the window attribute, visi-
ble, is bound to the current value of the
cbox checkbox by a constraint. When a
user enables or disables the checkbox,
OpenLaszlo will modify the visibility of
the window accordingly, without need-
ing an event handler to do so.

Data Handling
The core task of many web applications
is that of displaying or editing data saved
server-side. To support this, the Open-
Laszlo XML language integrates a num-
ber of powerful methods.

The grid display element draws the
displayed elements from the superordi-
nate dataset element. The dataset tag
contains either the XML-formatted data,
as in Listing 5, or the dataset element
loads the data from the server via HTTP,
as shown in Listing 3. This gives devel-
opers the ability to evaluate current da-
tabase data.

OpenLaszlo processes data on the
basis of XPath [3], a technology devel-
oped by the W3C consortium to address
parts of an XML document. In the exam-
ple, /forecast/day in contentdatapath,
which is in the data source, addresses
all day nodes in the forecast category.

Client-Server Interaction
Interactions between client- and server-
side program logic are typical for larger
scale web applications. In many cases,
access by multiple clients to a shared da-
tabase requires access to functionality
implemented server-side, often with the
aim of keeping the client application
lean. A lean client application saves

KNOW-HOWOpenLaszlo

51ISSUE 78 MAY 2007W W W. L I N U X- M A G A Z I N E . C O M

Figure 1: Object-

oriented inter-

face designs.

01 <menubar width="200" >

02 <menu text="Menu 1" width="100">

03 <menuitem text="Menu item 1"

04 onselect="canvas.whichOne(this);"/>

05 <menuitem text="Menu item 2"

06 onselect="canvas.whichOne(this);"/>

07 <menuitem text="Menu item 3"

08 onselect="canvas.whichOne(this);"/>

09 <menuseparator/>

10 <menuitem text="Menu item 4"

11 onselect="canvas.whichOne(this);"/>

12 </menu>

13 <menu text="Menu 2" width="100">

14 <menuitem text="More items..."

15 onselect="canvas.whichOne(this);"/>

16 </menu>

17 </menubar>

Listing 2: Drop-Down Menu

01 <canvas height="250">

02 <dataset name="weatherdata"
request="true"

03 src="http://www.
laszlosystems.com/

04 cgi-pub/weather.
cgi?zip=10022"/>

05 <grid datapath=
"weatherdata:/weather"

06 contentdatapath=
"forecast/day"/>

07 </canvas>

Listing 3: Multicolumn Grid

client resources and saves downloading
large amounts of program code when
launching an Internet application.

Besides data access, OpenLaszlo offers
various approaches to integrating server-
side processes with the client application
flow. One way of establishing a connec-
tion to a server in the background is
the XMLHttpRequest class, which Open-
Laszlo provides in the form of script
blocks and Javascript implementations
for current browsers.

In contrast to Javascript code, which
runs in the browser, the similar Open-
Laszlo code does not pose any issues
with browser incompatibility. Open-
Laszlo converts the Javascript code
to Flash bytecode that the Flashplayer,
rather than the browser’s Javascript
engine, runs.

Besides XMLHttpRequest in Javascript
code, OpenLaszlo also supports the
SOAP protocol. Listing 6 provides some
sample code that establishes a connec-
tion to the Amazon SOAP interface and
outputs the available methods in a
debug window.

SOAP has been criticized for transmit-
ting large volumes of XML code for the
simplest of calls. As an alternative to
SOAP, OpenLaszlo also supports the sim-
pler XML RPC protocol.

OpenLaszlo is based on Tomcat 5. The
OpenLaszlo SDK contains a Tomcat serv-
let container. The precondition for a full-
fledged OpenLaszlo server is a Java Run-
time Environment, Version 1.4 or newer.
The Java platform brings the ability to
access Java objects and methods directly
from the client application. An Open-
Laszlo server is easy to set up. After in-
stalling the Java SDK, unpack the Open-
Laszlo tarball and call Path/to/unpack/
directory/server/tomcat-5.0.24/bin/
startup.sh. The sample applications in
the archive should then be accessible on
http://localhost:8080/lps-Openlaszlo-
Version. On production servers, a rewrite
rule in the Apache configuration ensures
that the Apache web server serves up
the OpenLaszlo directory as a proxy on
the standard port 80:

RewriteEngine on
RewriteRule U
^/directory(.*)$U
http://localhost:8080/lps-U
Openlaszlo-Version$1 [p]

For more information on server adminis-
tration, see the OpenLaszlo site [4]. In
environments without a Java Runtime
Environment, such as shared web host-
ing without root access, OpenLaszlo can
be run in solo mode. An OpenLaszlo
server can compile the applications as
separate, executable .swx files that pro-
vide the whole functionality in Flash
code that runs client-side. A web server
without Java can provide this support on
the Internet; however, RPC functions are
not available in these applications.

Conclusions
The OpenLaszlo XML language relies on
standards that web developers will be fa-
miliar with in many areas. The XML tags
for defining display elements are similar
to HTML tags. The client-side program
logic uses typical DOM syntax to access
tags. Javascript 1.4 is used as the pro-
gramming language. The display ele-
ments are visually more attractive than
their HTML counterparts and can be ani-
mated without too much effort. Besides
the typical web programming approach
of generating client-side program code in
the server’s own language, OpenLaszlo
has more powerful methods of client-
server interaction. In addition to XML-
HttpRequest, the framework supports
SOAP and XML RPC, as well as the op-
tion of calling server-side Java program
code directly in the client. OpenLaszlo
applications run on the proprietary
Flashplayer, which might seem to be a
disadvantage to some users but guaran-
tees robustness and cross-browser com-
patibility that removes the need for
extensive testing. The next version of
OpenLaszlo will be capable of using
Ajax for the client-side display and
program logic. ■

[1] Flashplayer use according to the
vendor: http:// www. adobe. com/
products/ player_census/ flashplayer/
version_penetration. html

[2] Overview of form elements in Open-
Laszlo: http:// www. openlaszlo. org/ lps/
examples/ components/ style_exam-
ple. lzx

[3] Xpath:
http:// en. wikipedia. org/ wiki/ XPath

[4] OpenLaszlo server administration:
http:// www. openlaszlo. org/ lps/ docs/
deploy/ deployers-guide. html

INFO

OpenLaszloKNOW-HOW

52 ISSUE 78 MAY 2007 W W W. L I N U X- M A G A Z I N E . C O M

01 <canvas>

02 <view id="box" width="200"
height="20"

03 <bgcolor="red"/>

04 <text onclick="box.
animate(

05 'height',box.height==

06 20?200:20, 500, false)">

07 Click here

08 </text>

09 </canvas>

Listing 4: State Change

01 <forecast>

02 <day label="TODAY"
desc="Rain Likely"

03 temp="Hi 60°F "/>

04 <day label="Tonight"
desc="Breezy"

05 temp="Lo 34°F "/>

06 <day label="Wednesday"
desc="Breezy"

07 temp="Hi 46°F "/>

08 [...]

09 </forecast>

Listing 5: XML-Formatted
Data

01 <canvas debug="true"
height="530">

02 <debug x="15" y="15"
width="415"

03 height="500" />

04 <soap name="amazon"

05 wsdl="http://
soap.amazon.com/

06 schemas3/AmazonWebServices.
wsdl">

07 <handler name="onload">

08 Debug.write('Amazon
soap

09 service loaded');

10 Debug.write('Amazon
WSDL at ' +

11 this.wsdl);

12 Debug.write('proxy:');

13 Debug.inspect(this.
proxy);

14 </handler>

15 </soap>

16 </canvas>

Listing 6: SOAP

