
22

Some high-end network monitor-
ing solutions sell for thousands
of dollars, and they may well be

worth the money if they can keep an
 enterprise-grade network functioning
smoothly. But if you’re looking for a
steady, versatile tool that will inform you
about events of your network and won’t
blow your budget, the free monitoring
application Nagios may be the answer.

What Is Nagios?
According to the Nagios website, the
purpose of Nagios is to “…inform you of
network problems before your clients,
end users, or managers do.” Nagios
monitors the hosts on your network,
checking for symptoms of possible prob-
lems. You can use Nagios to monitor net-
work services, host resources (such as
processor load and available disk space),
and environmental factors such as the
temperature in the server room.

Nagios is easily extensible – you can
get Nagios to monitor almost any poten-
tial network problem. You can display

Nagios output in a graph or an HTML-
based table. You can even get Nagios to
send you an alert if a problem appears.

Nagios is not exactly a complete moni-
toring solution, but is more like a dae-
mon that manages the monitoring pro-
cess. The Nagios configuration defines
the hosts and services that Nagios will
monitor, and small, independent test
programs known as plugins obtain and
return the status information. Several
predefined plugins are available through
the Nagios website, and you can also
create your own plugins.

The hosts and services monitored by
Nagios are all defined through the Nag-
ios configuration files. The configuration
files also contain settings for the Nagios
daemon itself, as well as information on
the contacts who will receive warnings
from Nagios alerts.

Installing the Server and
Plugins
At this writing, the current, stable ses-
sion of Nagios is version 2.7. For a small-

to medium-sized network, you’re better
off working with the stable version. To
monitor a very large network with 300 to
400 hosts, you may wish to experiment
with the upcoming version 3.0, which
promises genuine performance benefits,
especially in larger environments.

You can download Nagios from the
project website [1], however, many
Linux distributions include a version of
Nagios. Packages for Debian [2], Fedora,
Red Hat, or RedHat Enterprise [3] are
available, and you can obtain SUSE
packages from the popular FTP mirrors.
Many Nagios users find it easier to build
Nagios from source code, as this gives
you the ability to install security patches
more quickly.

To build Nagios yourself, you will
need to install the apache or apache2,
libgd, libjpeg-devel, and openssl-devel
packages, including any dependencies.
The following commands prepare the
server for installing Nagios:

useradd nagios
groupadd nagios
mkdir /usr/local/nagios
chown nagios:nagios U

Watching your systems with Nagios

NETWORK MONITOR

Nagios monitors your network and provides early warning for

 problems with hosts and services. BY JULIAN HEIN

Nagios WorkshopCOVER STORY

22 ISSUE 79 JUNE 2007 W W W. L I N U X- M A G A Z I N E . C O M

23

/usr/local/nagios
useradd nagcmd
groupmod -A nagcmd www-data
groupmod -A nagcmd nagios

The next step in is to unpack and install
the source code:

tar zxvf nagios-2.7.tar.gz
cd nagios-2.7
./configure U
--with-command-group=www-data
make all

./configure -help gives you an overview
of the parameters that are available for
the build. After completing the build,
you can install the application by typing
make install. Additional make com-
mands install an init script, a sample
configuration, and a pipe for communi-
cation between the web interfaces and
the daemon:

make install-init
make install-config
make install-commandmode

The Nagios package itself does not con-
tain any plugins, and you will need to
install them separately.

You can obtain the plugins from the Nag-
ios website [1]. Version 1.4.6 of the
plugins is the current version. However,
many plugins will not build unless you
have specific header files or clients li-
braries installed on your system. Addi-
tionally, some plugins are only available
as Perl scripts or are located in the con-
trib subdirectory of the plugin package.
You will need to copy plugins of this
kind to /usr/local/nagios/libexec.

Configuring Nagios
The central Nagios configuration file,
/usr/local/nagios/etc/nagios.conf, con-
tains global settings for the Nagios dae-
mon. A sample configuration file is gen-
erated automatically when you compile
the Nagios binaries. If you are using a
package-based Nagios version, or if you
are working with a version of Nagios
preinstalled on your system, look for a
sample configuration file in the Nagios
directories. (See “Managing Configura-
tion Files” for more on sample files in
Nagios.) The Nagios configuration file
contains more configuration options
than this article can cover. Complete
documentation of the Nagios configura-
tion file is available at the Nagios web-
site [4].

One of the most important settings in
this global configuration file is a refer-
ence to the object definition file(s) that
will be used with Nagios:

cfg_file = <filename>

The object definition file contains most
of the site-specific information describ-
ing the hosts and services you wish to
monitor. Depending on the size and
complexity of your network, you may
wish to place this object information in
several files.

You can either use the preceding cfg_
file directive multiple times, or you can
use the cfg_dir directive to specify a di-
rectory with object definition files:

cfg_dir = <directory name>

A Nagios object is essentially anything
that Nagios needs to know about, such
as a service you wish to monitor, a com-
mand to call an external program, a host
operating on the network, or a contact
who will receive notification in case of
emergency.

The box called “Nagios Objects” lists
some of the possible objects in the object
definition file. The Nagios website pro-
vides a complete description of pre-de-
fined Nagios objects [5]. I’ll describe a
few of the most important objects.

Timeperiod settings define when to
monitor or notify. The Timeperiod object
spells out the time period information
(see Listing 1).

The most important property associ-
ated with the Timeperiod is timeperiod_
name, which is referenced by many
other functions in the Nagios configu-
ration. The web interface uses the
extended alias name. Individual time
values always refer to a weekday.

It is preferable to use a separate con-
figuration file for time periods, such as
/usr/local/nagios/etc/objects/timeperi-
ods.cfg. Initially, you will need three def-
initions of the most common scenarios,
for example, for always, workhours, and
nonworkhours.

Nagios refers to any kind of combined
definition that calls a program or shell
script as a command. An example is
shown in Listing 2. In this example, the
command object tells Nagios to call the
check_smtp plugin with specific parame-
ters. $HOSTADDRESS$ refers to a Nagios
macro to which appropriate data is
passed when the macro is called. The

Nagios needs at least one configuration
entry for the following objects.

• Timeperiods: time periods for moni-
toring and notification;

• Commands: monitoring checks and
notifications;

• Contacts: contacts and email ad-
dresses;

• Contactgroups: groups of contacts;

• Hosts: devices and their settings;

• Hostgroups: groups of hosts;

• Services: configuration for monitoring
services.

The following objects are not strictly
necessary, but they are offered as ex-
tended configuration options:

• Servicegroups: groups of monitored
services;

• Dependencies: definition of depen-
dencies between hosts or services;

• Escalations: escalation rules for noti-
fication;

• ExtendedInformation: extended set-
tings for the web interface.

Nagios Objects

01 define timeperiod {

02 timeperiod_name
nonworkhours

03 alias
outside working hours

04 monday
00:00-09:00,17:00-24:00

05 tuesday
00:00-09:00,17:00-24:00

06 wednesday
00:00-09:00,17:00-24:00

07 thursday
00:00-09:00,17:00-24:00

08 friday
00:00-09:00,17:00-24:00

09 saturday
00:00-24:00

10 sunday
00:00-24:00

11 }

Listing 1: Timeperiod
Configuration

COVER STORYNagios Workshop

23ISSUE 79 JUNE 2007W W W. L I N U X- M A G A Z I N E . C O M

plugin parameter -p stands for the SMTP
port number, and -w and -c introduce the
WARNING and CRITICAL thresholds.

The information passed to the plugin
depends on the plugin you are using.
HTTP monitoring requires parameters
such as the server name, the path, the
user name and the password, whereas a
ping check just requires an IP address.
The easiest way to find out which pa-
rameters a Nagios plugin needs is to run
the plugin with the --help parameter.

Nagios defines persons and contact
addresses with the Contacts object (see
Listing 3). Contacts are mainly used for
notification in case of problems, but they

are also used to assign access privileges
to the web interface.

Listing 3 is the first example of an ob-
ject defined with another object: for ex-
ample, nonworkhours is defined in the
Timeperiods object (see Listing 1). no-
tify-by-email and host-notify-by-email
represent commands that Nagios uses to
pass on messages.

To avoid the need to list large numbers
of individual contacts, you can add the
contacts to groups:

define contactgroup {
 contactgroup_name linux-admins
 alias Linux administrators

 members jdoe,mtestmann,wadmin
}

Any device you wish to monitor must be
defined as a host (Listing 4).

The most important properties of a
host are its name and IP address. The
max_check_attempts variable defines
how often to repeat a check before Nag-
ios assumes a failure and notifies an
administrator. contact_groups specifies
groups to notify in the case of a failure.
Our example uses a contact group that
we set up earlier. Individual hosts can
be collected in arbitrary host groups for
easier management:

define hostgroup {
 hostgroup_name linux-servers
 alias Linux Server
 members linux1,linux2,tux,U
 webserver,mybox
}

Once you have defined time, host, and
contact settings, you’re ready for the
service definitions. A service definition
specifies the resources you wish to mon-
itor. This is where everything we have
specified starts to gel (Listing 5).

Listing 5 also demonstrates how to
pass parameters to a check command.
Note that the parameters are separated
by !. This passes the values in to the
macros $ARG1$, $ARG2$ and so on,
which are then passed on to the plugin.

In normal operations, it makes sense
to distribute the Nagios configuration
over multiple, individual files and, de-
pending on your project requirements, to
organize the files in various subdirecto-
ries. For the time being, you can proba-
bly make do with a single file. The Nag-
ios sources include a file called localhost.
cfg or minimal.cfg, which is perfect for
your first steps with Nagios.

After creating or modifying the Nagios
configuration files, you can perform a
configuration check. The -v switch tells
Nagios to check the complete configu-
ration for syntax errors and, above all,
to make sure that references to other
objects can be resolved correctly. As an
argument, Nagios just expects the name
of the main configuration file:

/usr/local/nagios/bin/nagios U
-v /usr/local/nagiosU
/etc/nagios.cfg

01 define command {

02 command_name check_smtp

03 command_line $USER1$/check_smtp -H
 $HOSTADDRESS$ -p $ARG1$ -w $ARG2$

04 -c $ARG3$

05 }

Listing 2: Defining a Command

01 define contact {

02 contact_name jdoe

03 alias Jon Doe

04 service_notification_period nonworkhours

05 host_notification_period nonworkhours

06 service_notification_options w,u,c,r

07 host_notification_options d,u,r

08 service_notification_commands notify-by-email

09 host_notification_commands host-notify-by-email

10 email jdoe@example.com

11 }

Listing 3: Contacts in Nagios

01 define host {

02 host_name linux1

03 alias Linux Server 1

04 address 192.168.1.254

05 parents main-switch

06 check_command check-host-alive

07 max_check_attempts 5

08 check_period always

09 contact_groups linux-admins

10 notification_interval 30

11 notification_period always

12 notification_options d,u,r

13 }

Listing 4: Host Definition

Nagios WorkshopCOVER STORY

24 ISSUE 79 JUNE 2007 W W W. L I N U X- M A G A Z I N E . C O M

If successful, the configuration check
displays a message: Things look okay.
No serious problems were detected during
the pre-flight check.

Launching the Daemon
You can launch the daemon by entering
the following command: /etc/init.d/
nagios start. If the daemon is already
running, you can just tell it to reload
to parse the new configuration: /etc/
init.d/nagios reload.

Assuming that Nagios does not output
any error messages, you have now
started the daemon, which will monitor
the hosts and services you have config-
ured. To find out which steps Nagios is
currently performing, you can take a
close look at the Nagios logfile: tail -f
/usr/local/nagios/var/nagios.log.

Web Interface Configuration
For normal controls, and above all, to
check the current status of all servers
you are monitoring, Nagios comes with
an integrated web interface that you
need to integrate with your local Apache

installation. If you are running Apache2,
the best approach is to create a file
called /etc/apache2/conf.d/nagios with
the entries shown in Listing 6.

To allow users to log on to the Nagios
web interface, you need to define ac-
count entries in htpasswd.users. If this
file does not exist, you will need to cre-
ate it using htpasswd:

touch /usr/local/nagios/etcU
/htpasswd.users
htpasswd /usr/local/nagios/etcU
/htpasswd.users jdoe

The user names must match the Nagios
contacts you created previously to al-
low the web interface to identify the
correct users and show these users

01 define service {

02 service_description smtp check

03 host_name linux1

04 check_command check_smtp!25!10!20

05 max_check_attempts 3

06 normal_check_interval 5

07 retry_check_interval 1

08 check_period always

09 notification_interval 30

10 notification_period always

11 notification_options w,c,r

12 contact_groups linux-admins

13 }

Listing 5: Service Check Configuration

COVER STORYNagios Workshop

Advertisement

only the hosts you assign to them. The
cgi.cfg file handles other web interface
functions and privilege settings.

Nagios Plugins
A Nagios plugin is essentially a small
utility that obtains system information.
As mentioned previously, a collection
of plugins is available for download
at the Nagios website. At a SourceForge
site devoted to the development of new
plugins [6], you’ll find links to third-
party plugins and information on writing
your own plugins.

Because plugins are independent
programs, you can simply run a plugin
at the command line to test it. It makes
sense to work with the Nagios server’s
user account, as this is the account
that will run the plugins when you
go live. The command line will differ
for each plugin, as every check type
may require different parameters. This
said, every plugin should have -h or
--help implemented. Calling help gives
you a quick summary of the various
options.

Consider the check_disk plugin:

nagios# ./check_disk U
-w 50% -c 20% -p /$$

DISK OK - free space: U
/ 45256 MB U
(64% inode=98%);U
| /=25137MB;37080;U
59328;0;74160

Plugins provide a return code value
that is not directly visible by default. You
can display the return code by typing
echo $?. The numeric return codes stand
for the following results: 0 for OK; 1 for
WARNING; 2 for CRITICAL; and 3 for
UNKNOWN.

The second part of the plugin output
is the visible results displayed in the web
interface. Many plugins translate the re-
turn value into a clear message, such as
the DISK OK message the above output
shows. However, you should not rely on
this – if in doubt, check the return code.

The third part of the results is sepa-
rated from the rest by a pipe symbol, |.
Nagios refers to this section as the per-

formance data. Add-ons process these
values, converting them to charts or
graphs that show changes.

If Nagios fails to find the plugin, or
if the plugin isn’t executable, or if the
plugin does not return the correct re-
sponse to the daemon, the web interface
displays a status of UNKNOWN and an
error message of Return Code of 127 is
out of bounds.

The parameters listed previously, -w
and -c, are defined for most plugins, as
they also define the thresholds for
WARNING and CRITICAL. Our example
sets the threshold for the remaining free
space on a partition to 50 or 20 percent.
When testing a plugin at the command
line, you need to choose a very low
threshold just to see if the plugin really
does return the required status.

If the results of your preparation and
checks are to your liking, you can add an
entry for the plugin as a check command
in your Nagios configuration:

define command {
command_name check_disk
command_line U
$USER1$/check_disk -w U
 $ARG1$ -c $ARG2$ -p $ARG3$
}

It is not typical to hard code warning
thresholds and partition names; instead
you would normally specify these values
when you define the service.

To retain as much flexibility as possi-
ble, Nagios uses macros. Macros are
strings whose names start with a $ sign;

Figure 1: Nagios configuration files often refer to other configuration files.

Commands

Hosts

Timeperiods

Services

Contacts
Host Notify Command

Service Notify Command

Notify Service

Notify Host

Contact
Groups

M
em

be
r

Of

Notify
Access

Host
Groups

Member

Of

No
tif

y

01 ScriptAlias /nagios/cgi-bin /
usr/local/nagios/sbin

02

03 <Directory "/usr/local/nagios/
sbin">

04 Options ExecCGI

05 AllowOverride None

06 Order allow,deny

07 Allow from all

08 AuthName "Nagios Access"

09 AuthType Basic

10 AuthUserFile /usr/local/
nagios/etc/htpasswd.users

11 Require valid-user

12 </Directory>

13

14 Alias /nagios /usr/local/
nagios/share

15

16 <Directory "/usr/local/nagios/
share">

17 Options None

18 AllowOverride None

19 Order allow,deny

20 Allow from all

21 AuthName "Nagios Access"

22 AuthType Basic

23 AuthUserFile /usr/local/
nagios/etc/htpasswd.users

24 Require valid-user

25 </Directory>

Listing 6: Nagios Web Interface Configuration

Nagios WorkshopCOVER STORY

26 ISSUE 79 JUNE 2007 W W W. L I N U X- M A G A Z I N E . C O M

the string is replaced with data at pro-
gram runtime. $ARGx$ macros are more
important. They are used to store param-
eters from service definitions.

Remote Monitoring
When monitoring remote resources,
Nagios distinguishes between direct and
indirect checks. Direct checks are
launched locally on the Nagios server.
Almost all checks that relate to network
protocols, such as ping, DNS, SMTP, or
HTTP, are run as direct checks that
simulate access just like a normal client:

nagios# ./check_http U
-H linux-magazin.de -w 5 -c 10
HTTP OK HTTP/1.1 200 OK - U
78673 bytes in 0.366 seconds

Nagios uses indirect checks if the plugin
needs to request local data from a re-
mote host.

To do so, Nagios has to connect to the
host before running the plugin directly
on that host. The simplest way of achie-
ving this is to set up SSH connections
between the Nagios server and the
clients without assigning passwords and
to use SSH to call the plugins. The
Nagios plugin package provides a check_
by_ssh plugin for this purpose.

To launch the check_disk plugin re-
motely on another server, you need to
encapsulate it in check_by_ssh. The com-
mand definition looks like this:

define command {
 command_name check_ssh_disk
 command_line $USER1$U
 /check_by_ssh U
 -t 60 -H $HOSTADDRESS$ -C U
 "$USER2$/check_disk U
 -w $ARG1$ U
 -c $ARG2$ -p $ARG3$"

check_by_ssh is launched locally. It es-
tablishes a connection to the server and
then runs the check_disk plugin, which
is installed on the server. The path to
plugins on remote servers is stored in
the $USER2$ variable, so there is no
need to specify the path.

Another option is the Nagios Remote
Plugin Executor (NRPE), a Nagios client-
server program for launching remote
plugins. To use Nagios Remote Plugin
Executor, you need to install the NRPE
Server along with the plugins on the
servers you are monitoring. NRPE com-
prises a daemon for the Nagios clients
and a check plugin for the Nagios server.

It makes sense to compile the plugin
directly on the Nagios server. After un-
packing, simply type ./configure and
make all. This creates check_nrpe, which

you can then copy to the required local
directory with the other plugins before
going on to configure a matching check
command:

define command{
 command_name check_nrpe
 command_line U
 $USER1$/check_nrpe -H
 $HOSTADDRESS$ -c $ARG1$
}

To save work, you can install the Nagios
Remote Plugin Executor service on the
clients from the packages or copy it from
the Nagios server.

It makes sense to run NRPE under
inetd or xinetd and to use TCP wrapper.
The README file for the NRPE package
contains instructions.

Finally, you need to enter the checks
you want NRPE to run remotely in nrpe.
cfg (see Listing 7). The sample file has a
couple of examples (see Listing 6).

Although NRPE is the official tool for
remote checks, it has some disadvan-
tages in comparison to SSH; for example,
Nagios Remote Plugin Executor needs an
additional daemon, and you need to
open up yet another port.

SNMP
SNMP is the tool of choice for collecting
information on remote hardware. The
Nagios plugin package provides check_
snmp for this purpose.

You can use check_snmp to acquire
values via the OID of the vendor MIB.
Following the familiar pattern for other
Nagios plugins, the command line for
this is: nagios# ./check_snmp -H <ip_
address> -o <OID> -w warning -c criti-
cal -m :.

The last argument, -m :, is important
but not very well documented. The -m :
parameter prevents the plugin from at-
tempting to load locally installed MIBs.
This causes error messages with all the
plugin versions. However, you do need
to find the right OIDs yourself, either by
checking out the vendor MIBs or by trial
and error using snmpwalk.

Figure 2: Nagios provides detailed summaries of status information.

01 command[check_users]=@libexecdir@/check_users -w 5 -c 10

02 command[check_load]=@libexecdir@/check_load -w 15,10,5 -c 30,25,20

03 command[check_disk1]=@libexecdir@/check_disk -w 20 -c 10 -p /dev/hda1

04 command[check_disk2]=@libexecdir@/check_disk -w 20 -c 10 -p /dev/hdb1

Listing 7: NRPE Examples

COVER STORYNagios Workshop

27ISSUE 79 JUNE 2007W W W. L I N U X- M A G A Z I N E . C O M

All of this network monitoring is of
very little use unless you notify the ad-
ministrator in case of problems. Again,
Nagios has a collection of sophisticated
alert functions. Each time Nagios detects
an error somewhere in the system, it
starts a complex analysis process. The
software starts by checking whether any-
one has acknowledged the error (see
max_check_attempts), whether down-

time for the host or service has been en-
tered via the web interface, and whether
the alert is enabled for the current time
of day (see notification_intervall).

Contacts
After doing this, Nagios discovers the
contacts assigned to the host and checks
its notification settings to find out if the
contacts should be notified, and if so,

what kind of notifications they expect
(see notification_options).

Finally, Nagios checks whether the
contact wants to be alerted at the current
time (see notification_period). Thanks to
this schema, Nagios supports very gran-
ular control of notifications.

Depending on the host, time, and
contact, you can send different messages
by different channels. To focus this
mechanism even further, escalations
give administrators the ability to change
the way subsequent alerts for existing
programs are handled.

To actually send out an alert, Nagios
sends a command similar to the check
commands. In other words, notifications
are not hard-coded in Nagios. Instead,
the program runs a shell command or
script (Listing 8).

The important part of the alert con-
figuration is the data sent to the mail
program. Again, macros are used to pass
on the data. The Nagios documentation
includes a full list of available macros.

Managing Configuration
Files
As a starting point for your experiments,
Nagios includes a number of sample
files. The minimal.cfg file simply imple-
ments a couple of checks for localhost.
bigger.cfg has a few more sophisticated
examples. However, even if you only
need to monitor a small network, it
makes sense to put more effort into

[1] Nagios homepage:
http:// www. nagios. org

[2] Debian repository with Nagios pack-
ages: http:// www. backports. org

[3] Plugins and Add Ons:
http:// www. nagiosexchange. org

[4] Nagios configuration file documenta-
tion: http:// nagios. sourceforge. net/
docs/ 2_0/ configmain. html

[5] Nagios Objects:
http:// nagios. sourceforge. net/ docs/ 2_
0/ xodtemplate. html

[6] Nagios Plugins:
http:// nagiosplug. sourceforge. net/

INFO

Figure 3: Nagios keeps a summary of notification events.

Of course, Nagios offers several solu-
tions for monitoring Windows servers.
Besides NRPE, of which a Windows
version is also available, NsClient is a
Windows agent that is simple to use.
The name NsClient refers to the name
of NetSaint, which was Nagios’s name
up to about 2001. And NsClient++ is a
successor that combines the functional-
ity of both alternatives in a single agent.

The installation is extremely simple:
after unpacking the ZIP file, you simply
copy the files to a suitable location on
the Windows server, such as c:\Pro-
gramme\NsClient++, and modify the set-
tings in NSC.ini to reflect local require-
ments. In particular, you need to enable
the individual modules at the start of the
configuration file. After that, the Win-
dows administrator needs to install the
Windows service via Start | Run by enter-
ing c:\Programme\NSClient++ /install
and net start nsclient++.

As the agent contains both of its prede-
cessors, you can use both plugins on the
Nagios server, that is, check_nt or check_
nrpe. The former has values for the
CLIENTVERSION, CPULOAD, UPTIME,
MEM-USE, USEDDISKSPACE, SERVICE-
STATE, and PROCSTATE parameters and

for all Windows PerfMon counters. A call
to query the status of a Windows service
looks like this:

./check_nt -H <host_address> U

-p <port> -s <password> U

-v SERVICESTATE -l U

<dienstname>

The easiest way to discover the name
of the querying Windows services is via
the Windows service manager proper-
ties, which is in Start | Administration |
Services. While most other parameters
are self-explanatory, performance
counters need some explanation. The
Windows performance monitor is a
central interface for performance values.
Administrators can use it both to query
Windows internal performance data and
data from many other server applica-
tions, such as Exchange Server or SQL
Server. The syntax for doing this is

#./check_nt -H <host_address> -p U

<port> -v COUNTER -l U

"\\Performanceobject(Instance)\\
Indikator"

The return value can be reformatted for
plugin output.

Monitoring Windows Servers with Nagios

Julian Hein is the founder and CEO
of NETWAYS GmbH (http:// www.
netways. de), which has been in the
business of implementing the
launching of and operating complex
networks for more than 10 years. TH

E
A

U
TH

O
R

Nagios WorkshopCOVER STORY

28 ISSUE 79 JUNE 2007 W W W. L I N U X- M A G A Z I N E . C O M

organizing your object con-
figuration.

Distributing the objects
over separate files based on
object type is recommended
(i.e., use a dedicated hosts.
cfg, services.cfg, contacts.cfg,
and so on), but even this ap-
proach quickly becomes hard
to keep track of, and there is
no real reason to keep indi-
vidual object types separate.

Nagios will find the objects
no matter how many differ-
ent files or even directories
you spread them over, as long
as your nagios.cfg file points
to the right places.

It makes sense to use sub-
directories to structure your
configuration logically. For
example, you could store
global settings and your net-

work sites at the top level.
The next level would then
contain individual subdirec-
tories for each customer,
department, or device type.

You can then include re-
lated objects, such as a host
along with the services and
contacts assigned to it, in the
same configuration file. The
best approach is to organize
objects in a way that helps
you find them easily.

Conclusions
Nagios offers far more than I
could hope to describe in this
article. Innumerable add-ons
and additional projects give
administrators the ability to
add monitoring functions for
any plausible scenario. Nag-
ios also supports alternative
notification systems that use
SMS and even make phone
calls (Figure 4). The add-on
portal [3] is the best place
to go if you are looking for a
Nagios extension or plugin.

No matter how unusual
your needs are, you are
bound to find an appropriate
plugin, or at least a plugin
you can use as a starting
point for creating your own
custom solution. Don't forget
to share your new plugin
with the community. ■

Figure 4: The Nagios WAP

interface can send an alert to an

Internet-enabled mobile phone.

01 define command {

02 command_name notify-by-email

03 command_line /usr/bin/printf "%b" $$

04 "***** Nagios 1.0 *****\n\n $$

05 Notification Type: $NOTIFICATIONTYPE$\n\n $$

06 Service: $SERVICEDESC$\n $$

07 Host: $HOSTALIAS$\n $$

08 Address: $HOSTADDRESS$\n $$

09 State: $SERVICESTATE$\n\n $$

10 Date/Time: $DATETIME$\n\n $$

11 Additional Info:\n\n $$

12 $OUTPUT$" | /usr/bin/mail -s $$

13 "** $NOTIFICATIONTYPE$ alert -
$HOSTALIAS$/$SERVICEDESC$ $$

14 is $SERVICESTATE$ **" $CONTACTEMAIL$

15 }

Listing 8: Notification Configuration

Advertisement

