
Linux supports a wide array of file-
system types, including many that
originated on other operating sys-

tems. The most common choices for
hard disks, however, remain the native
Linux ext2 and ext3 (the successor to
ext2), followed by the high-performance
XFS and ReiserFS filesystems. For com-
patibility, it is also important to know
how to work with the VFAT filesystem,
because it is the standard choice found
pre-installed on many media, including
USB thumb drives and flash disks.

Finally, several of the same utilities
used to manage normal filesystems also
apply to swap partitions, which the
Linux kernel uses as virtual memory
when RAM is scarce.

mkfs
The mkfs command (Figure 1) creates a
new filesystem on a specified block de-
vice, such as a partition on a hard disk.
The basic usage is

mkfs -t filesystem_type /the/device

where filesystem_type is a Linux-sup-
ported filesystem type (e.g., ext2 or xfs)
and /the/ device is the location of the tar-
get disk partition (e.g., /dev/hda1 or
/dev/sdc3). Filesystem-specific options
are added after filesystem_type.

mkfs hands off creation of the filesys-
tem to one of several specialized utili-
ties, depending on the filesystem type
you specify: mkfs.ext2, mkfs.xfs, or
mkfs.vfat, for example. Because filesys-
tems differ so much from each other,
having specialized tools maintained by
experts in the individual filesystems re-
sults in more stable code.

Most of these utilities implement the
same options, although they vary ac-
cording to the features implemented in
the different filesystems. Although mkfs
calls these other utilities, note that you
should generally run the standard mkfs
command when creating a filesystem,
instead of running any of the utilities di-
rectly.

Despite the differences, a few key op-
tions are common to all mkfs.* utilities.
Adding the ‑c flag will check the speci-
fied device for bad blocks, which will
then be skipped over during the actual
filesystem creation step. Adding the ‑v or
‑V flags produces verbose or extremely
verbose output, respectively.

mkfs examples
To format the first partition of the first
serial ATA drive on a system as ext3, you
would run the command:

mkfs -t ext3 /dev/sda1

This command uses the default block
size, inode parameters, and all other op-
tions, some of which are actually deter-
mined at run time when mkfs analyzes
the geometry of the disk partition.

The following command

mkfs -t ext3 -b 4096 /dev/sda1

will also create an ext3 filesystem on
/dev/sda1, but it will force the use of
4,096-byte blocks. Running mkfs ‑t ext3
‑b 4096 ‑J device=/dev/sdb1 /dev/sda1
will create the same filesystem as the
preceding command, but it will create
the journal on a separate partition, /dev/
sdb1.

To create an XFS partition on /dev/
sda1, enter the following command:

mkfs -t xfs /dev/sda1

To specify the use of 4,096-byte blocks
on this filesystem, use mkfs ‑t xfs ‑b
size=4096 /dev/sda1 – a different syntax
than that used for ext3. Similarly, mkfs ‑t
reiserfs /dev/sda1 creates a ReiserFS file-
system with the default settings; to
change the journal location to /dev/sdb1,
you would run:

mkfs -t reiserfs -j U

 /dev/sdb1 /dev/sda1

Configuring filesystems with mkfs,
df, du, and fsck.

BUILDER
Although most Linux distributions today have simple-to-use graphi-

cal interfaces for setting up and managing filesystems, knowing

how to perform those tasks from the command line is a valuable

skill. We’ll show you how to configure and manage filesystems with

mkfs, df, du, and fsck. BY NATHAN WILLIS

S
ta

n
islav

 K
o
m

o
g
o
rov, Foto

lia

ConfiguRationConfiguring Filesystems

37LINUX SHELL HANDBook

The variations in syntax make it espe-
cially critical to refer to the man page for
more on the use of mkfs with specific
filesystem options.

Routine Maintenance
Although hard disk sizes increase every
year, it still seems as though they fill up
faster than they can be replaced. Run-
ning out of space on a filesystem is one
of the most common problems you are
likely to encounter on a Linux system,
and it is not just an inconvenience for

storage reasons –
the system’s use
of temporary files
means that a full
or nearly full root
filesystem could
interfere with nor-
mal operations.

To check filesys-
tem usage, use df
(Figure 2). When
given no argu-
ments, df will re-
turn a table sum-
marizing the
usage of all of the
mounted filesys-
tems, in kilobytes
and as a percent-
age of each file-
system’s total size.
To get a report for

a particular filesystem, specify it as an
argument, such as df /dev/sda1. Also,
you can pass a file name as an argu-
ment, and df will report on the filesys-
tem that contains the specified file –
which could be handy if you don’t re-
member where a particular filesystem is
mounted. Finally, a few options exist to
make df more useful: ‑i reports inode
usage instead of block usage of the
filesystem(s); ‑l limits the report to local
filesystems only; ‑‑type= filesystem_type
and ‑‑exclude‑ type= filesystem_type

allow you to limit or exclude output to a
particular filesystem type, respectively.

On discovering a nearly full filesystem,
you can further explore space usage with
du. Executing du /some/directory will re-
turn a list of the disk space occupied by
each subdirectory beneath /some/direc‑
tory, expressed in kilobytes. Adding the
‑a option tells du to report the space
used by the files in addition to the direc-
tories.

Both commands are recursive. If you
do not provide a directory as an argu-
ment to du, it will report on the current
directory. The ‑c option produces a grand
total in addition to individual usage sta-
tistics. Other option might help track
down an errant large file, such as ‑L,
which follows all symbolic links; ‑x,
which limits the scope of the search to
the current filesystem only; and
‑‑max‑depth=N, which allows you to
limit the number of recursive subdirecto-
ries into which you descend. This option
is very helpful when dealing with a large
file library.

Several utilities exist to help you get
better performance out of your filesys-
tems. The tune2fs program allows you to
control many parameters of ext2 and
ext3 filesystems; you can set the number
of mounts between automatic filesystem
integrity checks with tune2fs ‑c N, set
the maximum time interval between
checks with tune2fs ‑i N[d|m|w] (where

Figure 1: The simulated mkfs commands for XFS and ext3 differ. (The

‑N and ‑n flags specify a simulation, which does not actually create a

filesystem.) The ‑f and ‑F flags tell mkfs to force filesystem creation,

even if it detects a filesystem already in place.

The ext2, ext3, XFS, and ReiserFS mkfs.*
utilities all support options that allow you
to tweak filesystem settings, such as the
size of the blocks used, the number and
size of inodes, the fragment size, the
amount of space reserved for use by root-
privileged processes, the amount reserved
to grow the group block descriptor if the
filesystem ever needs to be resized, and
settings for stripe, stride, and other details
required for using the filesystem in a RAID
array.

The good news is that all of these parame-
ters have default settings, and unless you
are sure you need to change them for a
specific reason, it is safe to create a filesys-
tem with the default settings. Nevertheless,
it is a good idea to familiarize yourself with
the basics of filesystem parameters in gen-
eral, in case you ever run into problems.

The block size is the size of the chunks that
the filesystem uses to store data – in a
sense, it is the granularity of the pieces into

which a file is split when stored on the disk.
Ext2 can use 1,024, 2,048, or 4,096-byte
blocks. Larger block sizes can improve disk
throughput because the disk can read and
write more data at a time before seeking to
a new location, but a large block size can
also waste space if there are a lot of small
files, because a full block is consumed for
each fragment of a file, even if only a small
portion of it is actually needed. All four file-
systems allow you to specify the block size
by adding a ‑b flag, but the syntax that fol-
lows the flag varies, so you should consult
the manual pages for each option.

Ext3, XFS, and ReiserFS all support filesys-
tem journaling, which helps prevent file-
system corruption by maintaining a log of
changes to files and directories. You can
specify the size of the journal either in
blocks or bytes, as well as whether the
journal is kept on the same device as the
filesystem or on a separate device. Here
again, the exact syntax differs between file-

systems, so check the manual page before
proceeding.

VFAT filesystems differ quite a bit from the
filesystems native to Linux and Unix-like
operating systems. Because VFAT is sim-
pler, you do not need to worry about inode
numbers, sizes, fragment sizes, or RAID
options. You can specify the number of re-
served sectors, sectors per cluster, and sec-
tor size – options analogous to block set-
tings in Unix-native filesystems – but in al-
most all cases, the defaults will suffice.

The mkswap command creates a swap
area on a disk partition, just as mkfs cre-
ates a filesystem. The basic syntax is the
same, mkswap /the/swap/device, with the
optional ‑c flag again allowing you to check
the partition for bad blocks before creating
the swap area. Just as a new filesystem
must be attached to Linux’s root filesystem
with mount before you can use it, a new
swap partition must be attached with
swapon ‑L /the/swap/device.

Filesystem Options

Configuring FilesystemsConfiguRation

38 LINUX SHELL HANDBook

d, m, and w are days, months, and
weeks, respectively), or add an ext3
journal to a filesystem that does not
have one with tune2fs ‑j. Also, you can
adjust RAID parameters, journal set-
tings, and reserved block behavior, as
well as change parameters manually,
such as the time last checked and num-
ber of mounts, which are usually re-
ported automatically.

ReiserFS has a tunefs.reiserfs utility in
the same vein, although at present, its
options are limited mostly to changing
journaling options, including the journal
size, location, and transaction size.

ReiserFS does have separate utilities
for resizing filesystems (resizefs.reiserfs)
and copying a filesystem from one de-
vice to another (cpfs.reiserfs). The re‑
size2fs tool can resize both ext2 and ext3
filesystems. All of the resizing tools can
both enlarge or shrink a filesystem, but
enlarging a filesystem requires that the
underlying disk partition have sufficient
empty space – the filesystem cannot
grow beyond the partition limit.

XFS has its own suite of utilities that
cover many of the same options. The
xfs_growfs command can resize an XFS
filesystem, and it can make other
changes as well. Using the ‑m option
with xfs_growfs, you can change the
amount of space reserved for inodes,
and the ‑l and ‑L options allow you to
make adjustments to the journal – both
features found in other utilities in the
other filesystems.

XFS also provides a defragmentation
tool called xfs_fsr that can defragment a
mounted XFS filesystem; no such utili-

ties exist for ext2, ext3, or ReiserFS. Ad-
ditionally, you can make backups and
filesystem snapshots of XFS. The xfs_
freeze tool freezes I/ O on a filesystem.
xfsdump writes a backup of a filesystem
(in inode order, which allows it to be run
on a mounted filesystem), and xfsrestore
restores from a previous backup.

troubleshooting
Linux checks each filesystem periodi-
cally and at boot time, looking for incon-
sistencies such as inodes that do not ap-
pear to be associated with a file, mis-
matches between the number of inode
links and the inode link count, or mis-
matches between the number of free
blocks in the filesystem and the expected
number, as recorded in the superblock.
All of these are indications that a crash
or other problem might have occurred.

The utility that performs the check is
fsck. If you suspect trouble on a filesys-
tem, you can run

fsck /the/device

to perform a check manually and make
any necessary repairs. If you run fsck
with no target device specified, it will
run checks sequentially on all of the file-
systems in /etc/fstab.

The filesystem-specific error-checking
programs – e2fsck for ext2 and ext3, re‑
iserfsck for ReiserFS, and fsck.vfat for
VFAT (Figure 3) – support many of the
same options, but again, the syntax may
vary, so it is critical to read the man page
for the filesystem checker before at-
tempting any repairs.

When corrupted, VFAT filesystems suf-
fer from a different set of problems: bad
clusters, bad directory pointers, even
bad file names. The fsck.vfat tool can
find and correct many of these problems.
Like the others, it can be called in non-
interactive mode for use in scripts, and it
can mark bad clusters automatically to
prevent their reuse in the future. The ‑V
flag tells fsck.vfat to run a second check
after it has tried to correct any errors.

XFS has separate error-checking and
repair utilities: xfs_check and xfs_repair.
As with the other journaling filesystems,
an option exists to point to the journal
on an external device. Two helpful fea-
tures unique to xfs_check are the ‑f flag,
which runs the check on a filesystem
image stored as a regular file (such as a
filesystem backup created with xfs‑
dump), and the ‑s flag, which specifies
that only the most serious errors are re-
ported. The xfs_repair tool can correct
most of the same corruption problems
tackled by e2fsck, reiserfsck, and the
other fsck.* utilities.

A more flexible examination of a prob-
lematic filesystem requires other pro-
grams. For ext2 and ext3 problems, the
debugfs tool lets you examine a filesys-
tem and correct errors interactively. de‑
bugfs can step through and work within
a filesystem with commands similar to
those of a typical Linux shell, such as cd,
open, close, pwd, mkdir, and even
chroot. Its real power comes from its
ability to examine superblocks, blocks,
and inodes directly, allocating and deal-
locating them individually, freeing
blocks, and even creating links. n

Figure 3: The results of an fsck with the default options on a VFAT

filesystem. The ‑v flag gives verbose output. The journaling file sys‑

tems (ext3 and ReiserFS) have options that allow you to specify the

location of the journal if it is stored on a different device.

Figure 2: The results of a df command showing disk usage on a live

system. The ‑a flag includes “dummy” filesystems like /proc in the

output.

ConfiguRationConfiguring Filesystems

39LINUX SHELL HANDBook

