
 
have lost many days, weeks, possi-

bly even months to JavaScript. The 

recent rise of JavaScript frameworks 

– and their increasing stability – has 

helped. The Google Web Toolkit (GWT) 

[1] looks like the next evolutionary stage 

in JavaScript development: Instead of 

writing in JavaScript, you can write in 

Java.

GWT is an environment for building 

optimized JavaScript applications that 

are cross-browser compatible. With 

GWT, you build JavaScript applications 

by coding in Java and compiling 

the code to highly 

optimized JavaScript, HTML, and CSS. 

As much as you might like working on 

intricate little cross-browser JavaScript 

bugs, there comes a point when enough 

is enough. GTW came along just before 

I reached my breaking point.

GWT provides a library of layouts, form 

elements, and other components for 

building web apps. Instead of adding 

JavaScript/ AJAX on top of raw HTML 

and CSS, you can use higher level Java 

components that GWT compiles to 

browser-safe JavaScript that 

probably won’t need 

debugging.

However, you don’t have to give up 

programming in JavaScript completely. 

JavaScript still has its place, and in this 

article, you’ll see how to expose parts 

of your GWT-build-app to JavaScript, 

thereby creating a proper API.

Some benefits of GWT are:

s฀ "ROWSER฀COMPATIBILITY฀n฀)F฀YOU฀USE฀
higher-level GWT components, you 

won’t spend as much time debugging;

s฀ 0ERFORMANCE฀n฀9OU฀GET฀OPTIMIZED฀
JavaScript code and optimized down-

load times.

s฀ %XPOSE฀!0)฀TO฀*AVA3CRIPT฀n฀9OU฀CAN฀
migrate section-by-section to GWT, 

using the existing JavaScript API;

s฀ $EBUGGING฀AND฀DEVELOPMENT฀n฀9OU฀
work in a stronger language than 

JavaScript – with better debugging 

tools.

At 3ev, we have built a front-end-based 

CMS that sits on top of the HTML/ CSS of 

any web page and allows in-place edit-

ing. This stuff is pretty cool but hell to 

debug. The app was first built on custom 

JS, then migrated to Prototype, and more 

RECENTLY฀-OO4OOLS�฀WITH฀%XT฀*3฀PROVIDING฀
SOME฀7INDOW�฀&ORM฀ELEMENTS�฀%VENTU-

ally, we started migrating parts of the 

CMS to GWT. This situation is quite 

COMMON�฀9OU฀HAVE฀A฀LARGE฀AND฀GROWING฀
JavaScript application that takes time to 

test and debug; GWT looks like an at-

tractive solution, but how can you plug 

it into the problem areas? In this article, I 

show you how to use GWT to build and 

integrate JavaScript components with 

existing apps and web pages.

To start, download an appropriate ver-

sion of GWT for your OS [2]. This down-

load contains a set of examples, the 

Java-to-JavaScript compiler, and tools 

for creating new applications and run-

ning tests. Next, untar the downloaded 

file and find applicationCreator:

  tar xzf gwt-mac-5฀

 1.5.2.tar.gz

 cd gwt-mac-1.5.2

 ./ 5฀

 applicationCreator 5

  --help

The applicationCreator 

tool creates a new GWT 

project for building 

JavaScript applications. 

The Ingenious Google Web Toolkit builds optimized JavaScript applica-

tions in a hurry. BY DAN FROST

Google Web Toolkit

72 ISSUE 04 SPECIAL EDITION

072-075_GWT.indd   72 28.01.2009   18:56:45 Uhr



ProjectCreator, in the same directory, is 

used to create GWT projects for editing 

IN฀%CLIPSE�฀BUT฀)�M฀GOING฀TO฀STAY฀EDITOR

agnostic here.

To start, create a simple project:

./applicationCreator -out 5

~/MyGwtProject 5

com.mycompany.client.MyApp

The application creator has now created 

the following files in ~/MyGwtProject:

MyApp-compile

MyApp-shell

src/com/mycompany/

         client/MyApp.java

         MyApp.gwt.xml

                  public/

                  MyApp.css

                  MyApp.html

This small number of files is nice be-

cause it means what you see is what 

you’re working on rather than folders 

and folders of stuff to wade through. 

Now, open up client/myapp.java, 

which contains the Java class that GWT 

will compile into working JavaScript 

code. This article sticks to one class, but 

you can refactor your code out into other 

classes as you would on any other proj-

ect. To start up the GWT shell, type the  

following:

./MyApp-shell

This puts you in hosted mode (Figure 1), 

which suddenly makes GWT about a 

 billion time more amazing than all the 

clever stuff I described earlier. Hosted 

mode is a browser dedicated to your 

 development environment that will 

 re-compile the Java code to JavaScript 

each time you refresh. When you make 

a change in the Java file and refresh the 

GWT shell, you’ll see the results straight 

away, thus obviating the need to compile 

the Java every time. Keep the GWT shell 

(i.e., the hosted mode browser) open 

during the next step.

The application that GWT created is 

quick and simple, and it shows off some 

standard components of web pages: but-

tons, images, boxes, and dialog boxes. 

Next, open up MyApp.java and change 

dialogBox.setText(“Welcome to GWT!”);

to:

dialogBox.setText("Welcome to GWT 5

- isn’t it amazing?!");

Now refresh your GWT shell, click the 

button, and see the Java compiled to 

JavaScript straight away. Of course, 

hosted mode is only useful during devel-

opment, so you can use compile to com-

pile the application to a set of JS, HTML, 

CSS, and image files (Listing 1). The app 

is then compiled to a new directory, 

www/  com.  mycompany.  MyApp/, which 

contains the files shown in Listing 2.

If you open up MyApp.html with a 

browser. This application is now com-

pletely self-contained; you can move the 

www/com.mycompany.MyApp directory 

to another location – for example, inside 

an existing web app:

mv www/com.mycompany.MyApp 5

/path/to/my_old_application/

The process of working with GWT 

should start to make sense: Rather than 

compiling Java to JS every time you 

 finish a feature or bug fix, you instead 

work in hosted mode until it’s 90% com-

plete and then compile to JavaScript.

The Java class implements EntryPoint/

onModuleLoad, which GWT triggers on 

each page load, so you can think of it as 

the onload in HTML pages or dom ready 

in libraries such as MooTools. A very 

small example shows this; edit MyApp.

java so the class contains only the lines 

shown in Listing 3.

Google Web Toolkit

73ISSUE 04SPECIAL EDITION

01  # ./MyApp-compile

02  Compiling module com.mycompany.MyApp

03  2008-08-30 15:14:35.774 java[2748:80f] [Java CocoaComponent compatibility 

mode]: Enabled

04  2008-08-30 15:14:35.775 java[2748:80f] [Java CocoaComponent compatibility 

mode]: Setting timeout for SWT to 0.100000

05  Compilation succeeded

06  Linking compilation into ./www/com.mycompany.MyApp

Listing 1: Compiling with GWT

01  548CDF11D6FE9011F3447CA200D7FB7F.

cache.png

02  9DA92932034707C17CFF15F95086D53F.

cache.png

03  A84A8EF7341E8139F58DC5FC2AD52F22.

cache.html

04  MyApp.css

05  MyApp.html

06  clear.cache.gif

07  com.mycompany.MyApp.nocache.js

08  gwt/

history.html

hosted.html

Listing 2: Contents of com.
mycompany.MyApp

072-075_GWT.indd   73 28.01.2009   18:56:45 Uhr



Intuitively, Window.alert() is calling 

the JavaScript alert function. If you fire 

up hosted mode using MyApp-shell, 

you’ll see that not much happens, but 

you’re starting to see how the JavaScript 

user experience fits around the Java 

code.

Next, try building a simple dialog box 

that loads from an existing AJAX URL. 

Out of laziness, make sure you’re im-

porting everything from GWT’s client 

package:

import 5

com.google.gwt.user.client.*;

Replace the contents of onModuleLoad 

with:

openDialogBox();

and then add the function shown in List-

ing 4.

If you open this in hosted mode, the 

diaglog box appears when the page 

opens, which is a nice demo, but it isn’t 

really useful. Instead, you want to be 

able to call the dialog box from any-

where in the application, and to do this, 

you need to expose part of the 

Java application to JavaScript 

using the JavaScript Native In-

terface (JSNI). 

First, create a function that 

declares itself “native” and 

 effectively initializes a Java-

Script “API,” 

such as the func-

tion shown in 

Listing 5.

Finally, in onModule-

Load, replace openDialog-

Box() with initJavaScriptAPI():

initJavaScriptAPI(this);

If you refresh hosted mode, you’ll see 

nothing because when the app is loaded, 

it only declares the JS API – a window 

only opens when the JavaScript function 

openDialog() is called. To see this work, 

add the following line inside the 

<body> in public/MyApp.html:

<a href=5

"javascript:openDialog();5

">Open my GWT dialog box</a>

Then, refresh hosted mode, click the 

link, and watch the dialog open. Al-

though this example is basic, it demon-

STRATES฀SOMETHING฀USEFUL�฀9OU฀CAN฀NOW฀
build complex, cross-browser functional-

ity in GWT and call this functionality 

from your existing JavaScript applica-

tions.

The dialog box is still just a nice demo, 

rather than anything really useful, so 

spice it up by adding AJAX between an 

existing AJAX server and GWT.

A typical requirement is for a dialog 

box to load its contents over AJAX, and 

you can easily achieve this by modifying 

your class. Add the code in Listing 6 to 

the end of openDialogBox(). 

Next, use MyApp-compile to deploy it 

INTO฀AN฀EXISTING฀APPLICATION�฀9OU�LL฀NEED฀
some existing web pages running locally 

– I’ll assume you’re running a LAMP 

stack. 

Then compile the app and copy the 

www directory to your existing applica-

tion:

./MyApp-compile

mv -r www 5

/path/to/my/app/gwt-www

touch /path/to/my/app/gwt-www/5

AjaxServer.php

Finally, create a file called AjaxServer.

php and add the following:

<php

echo "Hello, World from my 5

existing AJAX server called 5

from GWT, but triggered 5

from a native JavaScript call!";

?>

To test the new AJAX feature, open up 

MyApp.htm from inside the application 

and click the link (Figure 2). The 

JavaScript API means you can call GWT 

An alternative to using GWT is to use 

one of the available JavaScript frame-

works, such as Scriptaculous/ prototype, 

MooTools, jQuery, or Ext JS.

These frameworks are extremely strong 

and have improved my JavaScript, but 

they don’t do the the same thing as 

GWT. For specific, smaller (but not 

small) pieces of AJAX/ Web 2.0 function-

ality, these libraries are great, but after a 

while, debugging, maintaining, and op-

timizing in a purely JavaScript environ-

ment becomes time consuming.

Alternatives

Google Web Toolkit

74 ISSUE 04 SPECIAL EDITION

01  public class MyApp implements EntryPoint {

02           //This is the entry point method.

03           public void onModuleLoad() {

04                    Window.alert("Hello");

05           }

06  }

Listing 3: MyApp.java

01          public void openDialogBox() {

02              final DialogBox dialogBox = new DialogBox();

03              dialogBox.setText("This is my simple dialog box");

04              dialogBox.setAnimationEnabled(true);

05                  dialogBox.center();

06          dialogBox.show();

07          }

Listing 4: Add this Function

01          private native void initJavaScriptAPI (MyApp myapp) /*-{

02                  $wnd.openDialog = function () {

03                          myapp.@com.mycompany.client.MyApp::openDialogBox()();

04                  };

05          }-*/;

Listing 5: Going Native

072-075_GWT.indd   74 28.01.2009   18:56:46 Uhr



functionality from the existing JS app, 

and the use of the AJAX server means 

that GWT can integrate with your exist-

ing AJAX functionality. However, the 

AJAX URL is hardcoded, so push that 

URL into a variable passed from 

JavaScript into Java.

First, modify the contents of init-

JavaScriptAPI (see Listing 7). 

The url argument on the first line is a 

JavaScript parameter, which will be con-

verted to a Java variable of type java.

lang.string and passed to openDialog-

Box. 

Then modify openDialogBox to accept 

the argument

public void 5

openDialogBox(String url) {

and then modify the request to use this 

variable:

RequestBuilder builder = 5

 new RequestBuilder 5

 (RequestBuilder.GET, 5

 URL.encode( url ));

Now compile it and move the files into 

your application, then add some URLs to 

the JS function calls so you can call ex-

isting URLs:

<a href=!javascript:openDialog5

 ('/ AjaxServer1.php');">5

 Open my GWT dialog box</ a> 5฀

<a href="javascript:openDialog5

 ('/ AjaxServer2.php');">5

 Open another dialog box</ a>

In the final step, get the GWT functional-

ity into the web app by including a 

JavaScript file. Add the script tag to the 

HTML header, adjusting the src=".." to 

point to the appropriate directory:

<script type="text/javascript"5

language="javascript" src=5

"com.mycompany.5

MyApp.nocache.js"></script>

Then, somewhere in your template, add 

links that trigger the JavaScript:

<a href="javascript:openDialog5

('/path/to/ajax.php');">5

Open my Ajax server</a>

As a test, you could throw this link onto 

WordPress, your existing CMS, or any 

other web page.

My experience is that JavaScript be-

comes unwieldy when the app gets 

large; I spend a long time optimizing the 

code at a low level. Also, because 

JavaScript is a scripting language and 

weakly typed, you often don’t find bugs 

right away. 

The move from lightweigt JavaScript to 

robust, heavy-weight Java isn’t trivial, 

but it is possible to migrate slowly or to 

migrate just those problem areas of the 

application. To migrate existing 

JavaScript functionality to GWT, you 

must start with a pretty solid API. Usu-

ally, this means you’re calling just one 

or two functions in your web page.

Start by building the components and 

functionality in GWT with the use of 

GWT components and features instead 

of raw HTML and JavaScript. It’s impor-

tant to stick to higher level components 

THAT฀PROVIDE฀8"ROWSER฀SAFETY�฀
Next, expose specific parts of the GWT 

component to JavaScript with the use of 

“native” functions. These functions will 

probably look just like your existing API 

so that you keep backward compatibil-

ity. Finally, you just need to include the 

GWT-generated JavaScript and remove 

the old, native JavaScript from your web 

page.  p

[1]  Google Web Toolkit: http://  code. 

 google.  com/  webtoolkit/

[2]  GWT download: http://  code.  google. 

 com/  webtoolkit/  download.  html

[3]  Gwt-fx (basic animation for GWT): 

http://  code.  google.  com/  p/  gwt-fx/

[4]  GWT Ext JS (application framework 

for GWT): http://  extjs.  com/  products/ 

 gxt/

[5]  GWT on Rails: http://  code.  google. 

 com/  p/  gwt-on-rails/

INFO

01  $wnd.openDialog = function (url) {

02       myapp.@com.mycompany.client.MyApp::openDialogBox(Ljava/lang/String;)(url);

03  };

Listing 7: Modifying initJavaScriptAPI

Google Web Toolkit

75ISSUE 04SPECIAL EDITION

01   RequestBuilder builder = new RequestBuilder(RequestBuilder.GET, URL.encode("/     

 AjaxServer.php"));

02  

03   try {

04     Request request = builder.sendRequest(null,

05      new RequestCallback() {

06       public void onError(Request request, Throwable exception) 

07               // Couldn’t connect to server (could be timeout,SOP violation, etc.)

08         dialogBox.setText( "Sorry - Could not load the HTML");

09        }

10  

11         public void onResponseReceived(Request request, Response response) {

12          if (200 == response.getStatusCode()) {

13            dialogBox.setText( response.getText() );

14           } else {

15                     // Handle the error.  Can get the status  

       text from response.getStatusText()

16            dialogBox.setText( "Sorry - I got the response,  

        but don’t understand it!");

17           }

18          }

19         }

20       );

21   } catch(Exception e) { }

Listing 6: Adding AJAX

072-075_GWT.indd   75 28.01.2009   18:56:46 Uhr


