
technology users, the percentage is
higher. Even if you don’t have a smart-
phone, you can still do two-factor au-
thentication using SMS (which has sort
of gotten cheaper, sigh) by sending a
one-time code to the phone when the
user is logging in. The real beauty of
two-factor systems is that you no longer
have to worry as much about your pass-
word being exposed to an at-
tacker. My advice here is
to watch what compa-
nies like Google are
offering to users
and consider imi-
tating them.

Input and
Output
Validation
I/ O validation is
by far the biggest
problem in most
web applications
and leads to prob-
lems like XSS,
CSRF, and SQL
injection.
To fur-
ther

S
o, I just checked – from January
1, 2010, to October 9, 2011, 8,917
Common Vulnerabilities and Ex-
posures (CVEs) were issued. Of

these, 873 were related to cross-site
scripting (XSS), which is just a hair
under 10 percent. Of the remaining web-
related vulnerabilities, cross-site request
forgery (CSRF) [1], file source disclosure
(whereby PHP contents are shown as
text rather than a rendered web page),
and so on were well represented. But
over time, things are getting better, right?
Not really; out of 51,353 total CVEs 6,580
are related to XSS, and if you plot the
bugs over time, a generally upward-
trending curve appears.

So, how does one go about fixing this
situation? The good news is that some
excellent resources are freely available.
The bad news is that people don’t seem
to be using them.

Design and Architecture
The best place to start with security is at
the beginning. The general design and
architecture of web applications used to
be quite similar to other applications,
but this has changed. Now a web appli-
cation commonly gets data not only
from the user but from other services
and sites, not all of which can be
trusted. Even if you don’t have the time
to build all the security into the first re-
lease, at least put in stub classes and
code that can later be filled out. For ex-
ample, authentication code that initially
uses just a shared secret but implements
the idea of separate users will make it
easier later to add the real authentication

system. Unfortunately, most people are
dealing with code that has already been
written, and it’s time to start fixing it
and retrofitting security to it. For a good
overview on all this, I suggest the “Guide
to Secure Web Services” [2], which is
published by NIST.

Adding Security
Even with good design, you might
choose to retrofit security onto an exist-
ing system. For one thing, new tech-
niques and technologies are coming out
all the time, and things that were once
expensive might now be cheap.

A great example of this is two-factor
authentication using a hardware
token. Although they haven’t gotten
cheaper, software tokens that can
run on a smartphone are widely
available
now (an
RSA token
will still
cost you
roughly
US$ 40-
50). Smart-
phones also
have become quite
common; about 20%
of all phones are smart-
phones, and I suspect among

Web Development – one day we’ll get it right

Web App
Offense
A few tools and tricks can find and correct web app

vulnerabilities. By Kurt Seifried

Kurt Seifried is an Information Security
Consultant specializing in Linux and net-
works since 1996. He often wonders how
it is that technology works on a large
scale but often fails on a small scale.

 Kurt SeIfrIeD

58

Features
Security Lessons: Web Apps

DECEMBER 2011 IssuE 133 lInux-MagazInE.CoM | lInuxpRoMagazInE.CoM

058-059_Kurt.indd 58 10/18/11 10:31:28 AM

complicate matters, things like JSON
have become the de facto data transport
method, mostly because XML is so over-
engineered and parsing can consume a
lot of resources.

Because JSON can contain pretty
much arbitrary data, it is extremely im-
port to ensure the text strings or arrays
you think you are receiving from the re-
mote end are, in fact, what they claim to
be. A perfect example of such misplaced
trust is the way Ruby handles the X‑For‑
warded‑For header. This header contains
a list of the system(s) that have for-
warded the web request on behalf of a
client, and it should only contain one or
more IP addresses separated by commas.
(At the time of this writing, the bug
wasn’t fixed yet.)

Unfortunately, Ruby fails to verify that
this string of text is in fact a list of IP ad-
dresses, allowing pretty much any con-
tent (a string of text containing
JavaScript, for example) to be included.
So, if you ever report back to the user
what their IP address is, unless you spe-

cifically check to make sure it is an IP
address, your Ruby application

has a XSS vulnerability. The
good news is that you

can’t easily set the
X‑Forwarded‑For on

the client, so an at-
tack would proba-

bly need an ad-
ditional vulner-
ability (most
likely in the
web client) to
actually pull it
off.

OWASP
And this is
where the
Open Web
Application
Security
Project
(OWASP)
[3] comes

in. By the
time this arti-

cle comes out in
print, the OWASP

Foundation should be
celebrating its 10th birth-
day. The thing that al-
ways amazes me is the

sheer breadth
and depth of
their work.
With 123 proj-
ects covering
everything
from web protocol fuzzing to educa-
tional tools such as WebGoat (a vulnera-
ble web server that you protect using
modsecurity [4], learning how to block
some very sophisticated attacks in the
process), OWASP definitely has some-
thing for everyone.

OWASP also publishes a large number
of books [5], many of which are avail-
able for free (the rest are pretty reason-
ably priced). My favorite is OWASP Code
Review, which goes over language-spe-
cific features and problems to look for
when doing a source code audit. It also
covers some of the trade-offs that can be
made (e.g., if you can’t sanitize incom-
ing data, you can often encode it so it is
less dangerous). OWASP also holds an
annual conference with slides and vid-
eos posted online [6].

Web Security tools and
Documentation
A number of good and great security
tools are available that you can use to
scan web applications and servers for
problems. One of easiest tools to use is
Nikto [7], which includes several thou-
sand checks and will find a lot of things
without a lot of time spent configuring
it. It also includes references to docu-
mentation explaining why a particular
issue could be a security risk, which is
extremely valuable if you need help con-
vincing someone to fix it.

You can also write custom checks and
modify existing ones easily, and the doc-
umentation is great. For more in-depth
checks, a number of proxy products can
manipulate requests. This makes interac-
tive testing much easier, because you
can browse through the site and then
start poking at specific components (like
shopping carts and login forms). If you
combine Nikto with the OWASP testing
guide, you’re almost guaranteed to find
security issues.

thinking Outside the
Box
Two more tools let me poke websites
and applications. The first one I like to
use is a LinkChecker [8]. Back when

the web was a huge pile of static HTML
pages, keeping links up to date was a
full-time job. Now, with dynamic web-
sites, at least in theory, you shouldn’t
have any dead links, right? Dead links
are a great indication for out-of-date,
misconfigured, or just poorly written
software. Combined with attack proxy
software, this can be a deadly combina-
tion.

The other side of link checking is that
it makes for a great load test. For exam-
ple, an untuned WordPress site will typi-
cally fall over after a few dozen requests
in rapid succession. Another thing to
look for while checking links is page
load time. If page load time varies a lot,
that’s a good indication you have soft-
ware that could be abused.

My second favorite tool is Google (Fig-
ure 1), although other search engines
will also work. Search terms like
inurl:wp-config.php and DB_NAME will,
sadly, locate working instances of
wp‑config.php. Even better, or worse,
toss a -localhost in there to find remotely
accessible database servers. nnn

[1] “Attack of the CSRF” by Kurt Sei-
fried, Linux Magazine, February
2009, pg. 66, http:// www.
 linuxpromagazine. com/ Issues/ 2009/
 99/ Security‑Lessons/
 %28kategorie%29/ 0

[2] Guide to Secure Web Services, NIST
Special Publication 800-95, http://
 csrc. nist. gov/ publications/ nistpubs/
 800‑95/ SP800‑95. pdf

[3] OWASP: https:// www. owasp. org/

[4] “Web Security” by Kurt Seifried,
Linux Magazine, September 2008,
pg. 45, http:// www.
 linuxpromagazine. com/ Issues/ 2008/
 94/ Security‑Lessons/
 %28kategorie%29/ 0

[5] OWASP Store: http:// www. lulu. com/
 spotlight/ owasp

[6] AppSecUSA 2011: http:// www.
 appsecusa. org/ schedule. html

[7] Nikto2: http:// cirt. net/ nikto2

[8] LinkChecker: http:// linkchecker.
 sourceforge. net/

 InfO

Figure 1: Google search results for wp-config.php files.

Features
Security Lessons: Web Apps

59lInux-MagazInE.CoM | lInuxpRoMagazInE.CoM IssuE 133 DECEMBER 2011

058-059_Kurt.indd 59 10/18/11 10:31:30 AM

