
right? Well, yes and no. Unless someone
mirrors the source code and checks the
commit logs, they won’t have any idea
what is going on. On the other hand, if
you also email your commits to a mail-
ing list (e.g., OpenBSD sends all CVS
commits to source-changes@), it is much
easier for a developer or interested party
(e.g., someone who repackages your
source code) to keep an eye on things.

The other benefit is that most mailing
lists are archived, so you now have addi-
tional sources to
check in case
you suspect
someone
monkeyed
with the
version
control sys-
tem. Again,
more eyes,
especially
different
eyes, make it
more likely
for sus-

N
ormally, when I think about in-
trusion detection, my thoughts
go straight to solutions for
things like network- and host-

based intrusion detection – in other
words, the usual suspects (Snort,
OSSEC, Prelude, event logging and anal-
ysis, etc.) [1] – but an often overlooked
area of intrusion detection is source code
modification attacks.

In the past few months, several high-
profile source code modification attacks
have taken place. Fortunately, two of the
largest were quickly detected and dealt
with, but only because pre-existing sys-
tems and processes were in place that
could detect the attack and allow it to be
handled.

Code Reviews
The Linux Kernel and open source proj-
ects in general excel at reviewing code. If
attackers can insert malicious code into
a popular project that people then in-
stall, they’ll be able to waltz right in to a
system. This happened several months
ago with three WordPress plugins [2]:
Add This, with 495,000+ downloads;
W3 Total Cache, with 600,000+ down-
loads; and WPtouch, with 2,200,000+
downloads. Needless to say, if even a
small percentage of users had installed
the malicious versions of these plugins,
the attacker would have had access to
thousands, if not tens of thousands, of
machines. Fortunately, the WordPress
team noticed the code changes: All three
back doors pass user-supplied content to
a PHP assert() statement, which evalu-
ates strings passed to it. Basically, this is
a sneaky way to run a string variable as
code.

So, what can you learn from this ex-
ample? Code reviews work. The most

obvious way to encourage code reviews
is simply to require them. The Linux
Kernel is a great example of this: Each
commit to the Linux Kernel must be
signed off on by other developers, and
this information is included with the
commit. Of course, this process only
works if you already have buy-in from
your developers; otherwise, they’ll prob-
ably just sign off on patches without ac-
tually reviewing them in depth. If the
carrot doesn’t work, there is always the
stick.

The Git version control system in-
cludes an option that is obvious in hind-
sight: the blame command. This option
simply lists who is responsible for the
various lines of code within a file, al-
lowing you to track down quickly
who committed the code you are in-
terested in. Other version control
systems, like Subversion and Mer-
curial, include
commands to
find out
who com-
mitted to a
file, but
it’s gener-
ally a two-
step process to
track down who modi-
fied a specific line of code.

Another aspect of code re-
views is making the code commits
public. But because I’m talking about
open source, the commits are public,

Detecting source code modification attacks

 Mods
Learn how to protect yourself against malicious attacks by

modified source code. By Kurt Seifried

Kurt Seifried is an Information Security
Consultant specializing in Linux and net-
works since 1996. He often wonders how
it is that technology works on a large
scale but often fails on a small scale.

 KuRt SeifRied

58

Features
Security Lessons: Modified Code Attacks

OctOber 2011 Issue 131 lInux-magazIne.cOm | lInuxprOmagazIne.cOm

058-059_kurt.indd 58 8/16/11 4:09:54 PM

picious commits to be noticed and
flagged as such.

Having a history of commits should
also help make strange or bad commits
more obvious. For example, the back
doors put in the WordPress plugins all
used the assert() PHP function, which
is rarely used (it’s a debugging function
primarily). Also, hostile code probably
won’t conform to your coding standards
(you do have coding standards, right?).
It also may be obfuscated, which should
be an obvious clue. (I hope you don’t
use obfuscated code.)

Source Code Signing
and distribution
Of course, having good, clean source
code does no good if the distribution is
done insecurely. Most open source proj-
ects simply use tar to package the
source code files into a single file and
then compress them with gzip or bzip2.
Many will also include text files with
SHA256, MD5, or both sums of the files,
which makes it possible to verify that
downloads are not corrupted, but this
doesn’t really prevent an attacker from
replacing the files and simply updating
the signatures file, so the obvious solu-
tion is to use good encryption software,

like GnuPG, to sign the files.
The good news here is that many
open source projects are signing

their source code tarballs with
PGP or GnuPG. A perfect ex-
ample of this is the recent at-
tack against vsftpd, where an
attacker managed to replace
the source code [3]. Fortu-
nately, the attacker was not
able to sign the code, and
this omission was noticed
(Listing 1).

But, what happens when
you don’t have the public
key needed to verify the
signature? The bad news
is, for many projects, find-

ing the signing key is often
not that easy. When you

check a signature, even if you
don’t have a copy of the public

key needed to verify the signature,
you will be able to find the Key ID of
the key used to sign the data.

If you’re lucky, the key details,
such as the fingerprint, will be on a
web page for the project. The Key ID

is an eight-character hexadecimal num-
ber, so it only encompasses 32 bits
(about 4 billion possibilities). Thus, in
theory, an attacker can create his or her
own key with the same Key ID as a legit-
imate key. The key fingerprint, on the
other hand, is 32 characters long, or 128
bits, so the chances of creating a key
with the same fingerprint (and Key ID)
as a legitimate key are infinitesimal.

With the Key ID, you can search the
Public Key Servers and probably find the
key in question. However, once you have
found the PGP key, you need to verify
that it is legitimate. Again, if you’re
lucky, the key will be signed.

The key used to sign the Linux Kernel
releases, for example, has more than 100
signatures; however, many, if not most,
keys used to sign code are only self-
signed (meaning that no third party has
signed the key). If this is the case, your
best bet is to use Google. Ideally, the key
will be widely referenced, possibly going
back for months or years, which will
allow you to confirm that the key is legit-
imate.

The next step is for a vendor like Red
Hat or Debian to take the source code
and package it up. For more information
on checking GPG and RPM/ APT signa-
tures look up my “Checking Signatures”
article from September 2010 [4].

Key Management
Of course, properly signed source code
and packages only work if the private
PGP keys used to sign the data are pro-
tected properly. At minimum, the key
needs to be protected by a good pass-
phrase and placed on a secure system, If
attackers can compromise the system
and install a key logger, for example, the
passphrase won’t help much because
they can just record it.

With this in mind, my advice is to
keep your key offline. A simple way to
accomplish this is to have a USB key/ CD
with the key on it. However, a better so-
lution is to have a dedicated system that
is not attached to the Internet (meaning
it’s very difficult to attack). A less expen-
sive way to accomplish this is to use a

bootable CD or USB key to fire up a sys-
tem that you only use to sign source
code [5].

The second aspect of key management
is making it easy for users to verify your
key. The two main ways to accomplish
this are by key signing and by publishing
your key widely. By getting a trusted
third party to sign your key, chances are
a user will have a key they already trust
that they can use in turn to verify your
key.

To publish your key widely, upload it
to key servers and publish the key, the
Key ID, and the fingerprint on your web-
site. This approach works especially well
if you have your own domain for the
open source project and an SSL certifi-
cate (making it easier to verify the con-
tent served from the website).

Conclusion
Securing your network and systems be-
gins with running software that has not
been compromised by an attacker. Fortu-
nately, on Linux, this process is pretty
easy. You start with secure source code,
which is then usually packaged by ven-
dors, who in turn distribute it securely.
But, users at all levels need to verify sig-
natures for this process to work. nnn

01 $ gpg ./vsftpd‑2.3.4.tar.gz.asc

02 gpg: Signature made Tue 15 Feb 2011 02:38:11 PM PST using DSA key ID 3C0E751C

03 gpg: BAD signature from "Chris Evans <chris@scary.beasts.org>"

 LiSting 1: gnuPg output of unsigned vsftpd tarball.

[1] “Security Lessons: Windows Log-
ging” by Kurt Seifried, Linux Maga‑
zine, August 2011, pg. 72

[2] “Add This, W3 Total Cache, WPtouch
backdoors” by Adam Harley,
http:// adamharley. co. uk/ 2011/ 06/
 wordpress‑plugin‑backdoors/

[3] “Alert: vsftpd download back-
doored” by Chris Evans/ Scarybeasts,
http:// scarybeastsecurity. blogspot.
 com/ 2011/ 07/ alert‑vsftpd‑download‑
backdoored. html

[4] “Security Lessons: Checking Signa-
tures” by Kurt Seifried, Linux Maga‑
zine, September 2010, pg. 44,
http:// www. linux‑magazine. com/
 Issues/ 2010/ 118/ VERIFIABLE

[5] “Security Lessons: Disposable Com-
puters” by Kurt Seifried, Linux Maga‑
zine, November 2010, pg. 42

 info

Features
Security Lessons: Modified Code Attacks

59lInux-magazIne.cOm | lInuxprOmagazIne.cOm Issue 131 OctOber 2011

058-059_kurt.indd 59 8/16/11 4:09:55 PM

