
R
ecently, an intern at Yahoo of-
fered to lend me a digital audio
book and suggested that she
could “dropbox” it for me. Al-

though I do try to keep in touch with to-
day’s youth, I was surprised to hear that
the service offered by dropbox.com has
become some kind of ubiquitous stan-
dard, to the point that “to dropbox” is
now a verb, just like “to google.”

Users can download the Dropbox cli-
ent binary (Windows, Mac, and Linux
are supported) from the website at drop-
box.com; this reveals a brand-new, local
Dropbox folder on their desktops. If you
drag some files into the folder, a soft-
ware tool automagically launches in the
background and gradually uploads the
new content to the Dropbox server with-
out further interaction, as long as your
Internet connection is up. Other clients
belonging to the same user, or autho-
rized buddies, located elsewhere on the
Internet synchronize just as magically by
downloading the shared files, giving the
user a permanently up-to-date folder
with important data on all of their com-
puters. If you happen to be on a com-
puter without a Dropbox client, all you
need is a browser to view and manipu-
late the files on the Dropbox website
(Figure 1).

Open Source Preferred
I must admit that I really didn’t relish
the thought of launching a binary on my

computer at home without having seen
the source code first. Fortunately, Drop-
box also offers a Web API that gives a
paranoid penguin friend like myself an
option for putting the free service to pro-
ductive use.

Sensibly, dropbox.com wants to train
the users of API-driven programs to
avoid typing their usernames and pass-
words in some third-party user interface
and, because of this, relies on the OAuth
protocol [2]. To register a user with to-
day’s featured Perl application, the code
first picks up a request token and re-
quest secret from the Dropbox website,
revealing its developer token and devel-
oper secret in the process.

Using the request token in the URL,
the application then points the user’s
browser to the Dropbox website, where
the user is prompted to enter their user-
name and password if they are not al-
ready logged in (Figure 2).

After a successful login, Dropbox asks
the user if they really want the “Perl Test
Client” application to access their Drop-
box data (Figure 3). If the user agrees,
the Dropbox website points the browser
back to the application and returns an
access token in the URL. The applica-
tion can then store the token and
handle jobs on behalf of the
user on his Dropbox account
until the token expires.

Wireframe Web
Server
Because a Perl command-
line application doesn’t
normally run a browser
interface, the dropbox‑init
script in Listing 1 puts to-
gether a minimal web

server on http://​localhost:8082, driven by
the CPAN Mojolicious::Lite module. It re-
sponds to the paths / and /callback, fea-
turing a starting point and a landing page
after the user has successfully logged on
to the Dropbox website, respectively.

The source for the HTML output ren-
dered by the server is located in the __
DATA__ segment starting in line 88. The
handler for the '/' path in line 44 refers
to a symbol named index in line 57,
which Mojolicious resolves to the
@@ index.html.ep marker in line 90 and
picks the corresponding HTML snippet
consisting of a simple HTML link point-

ing the user to
the Dropbox

login site.
The %

Mike Schilli works as a software engineer
with Yahoo! in Sunnyvale, California. He
can be contacted at mschilli@perl­
meister.com. Mike’s homepage can be
found at http://​perlmeister.​com.

 Mike Schilli

The proprietary Dropbox service has become a popular way to exchange large files. The

Dropbox web API also supports scripts, like the one in this article that picks up files from

behind a firewall. By Mike Schilli

Doing more with Dropbox

 Box It!

Features
Perl: Dropbox

63linux-magazine.com | Linuxpromagazine.com	 Issue 129	A ugust 2011

063-067_Perl.indd 63 6/14/11 4:17:07 PM

layout 'default'; instruction creates a
well-formed HTML document from it.

When the user launches the drop‑
box‑init Mojolicious application from
the command line and types http://lo‑
calhost:8082 into the browser, the mini-
mal UI (Figure 4) appears, containing
just a single link to the dropbox.com
login page.

The Net::Dropbox::API module, also
from CPAN, nicely abstracts Dropbox ac-
cess and OAuth authorization. After the
API developer sets the combination of
the developer key and secret they picked
up from the Dropbox Developer site [3]
in the constructor call in line 33, a later
call to the login() method in line 51 ac-
cesses the Dropbox server behind the

scenes, picks up a request token and se-
cret, and returns a Login URL. The web
application then presents this to the user
who can click on it to log in to Dropbox.

The Mojolicious application then
stores the retrieved values for the re-
quest token/​secret in the global vari-
ables $REQUEST_TOKEN and $REQUEST_SE‑
CRET, where it can access them later

Figure 1: The Dropbox web interface.

Figure 2: The Perl application points to drop-

box.com, where the user enters their creden-

tials to authenticate.

001 �#!/usr/local/bin/perl ‑w

002 �#############################

003 �# dropbox‑init ‑‑

004 �# collect dropbox token

005 �# Mike Schilli, 2011

006 �# (m@perlmeister.com)

007 �#############################

008 �use strict;

009 �use Mojolicious::Lite;

010 �use Net::Dropbox::API;

011 �use YAML

012 � qw(LoadFile DumpFile);

013

�014 �my $dev_key =

015 � "iyaiu823ajksgwf";

016 �my $dev_secret =

017 � "zlkj32lkj2kl3dp";

018 �my $listen =

019 � "http://localhost:8082";

020 �my ($home) = glob '~';

021 �my $CFG_FILE =

022 � "$home/.dropbox.yml";

023

�024 �my $CFG = {};

025 �$CFG = LoadFile($CFG_FILE)

026 � if ‑f $CFG_FILE;

027

�028 �@ARGV = (

029 � qw(daemon ‑‑listen), $listen

030 �);

031

�032 �my $box =

033 � Net::Dropbox::API‑>new(

034 � {

035 � key => $dev_key,

036 � secret => $dev_secret,

037 � }

038 �);

039

�040 �my $REQUEST_TOKEN;

041 �my $REQUEST_SECRET;

042

�043 �#############################

044 �get '/' => sub {

045 �#############################

046 � my ($self) = @_;

047

�048 � $box‑>callback_url(

049 � "$listen/callback");

050 � $self‑>stash‑>{login_url} =

051 � $box‑>login;

052

�053 � $REQUEST_TOKEN =

054 � $box‑>request_token;

055 � $REQUEST_SECRET =

056 � $box‑>request_secret;

057 �} => 'index';

058

�059 �#############################

060 �get '/callback' => sub {

061 �#############################

062 � my ($self) = @_;

063

�064 � $box‑>auth(

065 � {

066 � request_token =>

067 � $self‑>param(

068 � 'oauth_token'),

069 � request_secret =>

070 � $REQUEST_SECRET

071 � }

072 �);

073

�074 � $CFG‑>{access_token} =

075 � $box‑>access_token();

076 � $CFG‑>{access_secret} =

077 � $box‑>access_secret();

078

�079 � DumpFile $CFG_FILE, $CFG;

080

�081 � $self‑>render_text(

082 � "Token saved.",

083 � layout => 'default');

084 �};

085

�086 �app‑>start;

087

�088 �__DATA__

089 �#############################

090 �@@ index.html.ep

091 �% layout 'default';

092 �<a href="<%= $login_url %>"

093 �>Login on dropbox.com

094

�095 �@@ layouts/default.html.ep

096 �<!doctype html><html>

097 � <head><title>Token Fetcher

098 � </title></head>

099 � <body>

100 � <pre>

101 � <%== content %>

102 � </pre>

103 � </body>

104 �</html>

 Listing 1: dropbox-init

64

Features
Perl: Dropbox

August 2011	I ssue 129	 linux-magazine.com | Linuxpromagazine.com	

063-067_Perl.indd 64 6/14/11 4:17:08 PM

when – assuming that the login was suc-
cessful – dropbox.com sends the
browser back to the minimal server with
the callback URL set in line 48. When
control is returned to the Mojolicious ap-
plication (Figure 5), it only needs to grab
the access token from the list of parame-
ters attached to the callback URL and, in
combination with the request token se-
cret stored previously, now has the keys
required to mess about with the user’s
Dropbox account to its heart’s content.
But the wireframe web application only
stores the two keys in the ~/.dropbox.yml
YAML file (Figure 6) to allow applica-
tions called later to pick them up from
here without having the user jump
through login hoops again.

Drone Operations
For ease of access to the user credentials
and transparent Dropbox control, Listing

2 defines a MyDropbox class, derived from
Net::Dropbox::API, with a constructor
that immediately serves up the keys
stored in the YAML file to the Dropbox
module so that applications that use it
only need to worry about their own op-
erations, and not about authentication
issues. This process also allows for oper-
ations in drone mode – that is, without
needing user interaction or even a web
browser.

Listing 3 shows a simple sample appli-
cation that pulls in MyDropbox, sets the
context to "dropbox" (production opera-
tions instead of the "sandbox" test envi-

ronment) and then calls list() to list the
files in the Photos folder.

A nested structure similar to Figure 7
is returned, and the programmer can
then extract the Dropbox content, gar-
nished with file names, file size, last
change date, and many other juicy bits
of information. Other methods offered
by the Dropbox API are uploading and
downloading, and even file deletion.
One test discovers whether a specific
part of the file hierarchy has changed
since the last request. There are no
bounds to the developer’s imagination
here, as long as you don’t exceed the
current daily limit of 5,000 requests.

Ghost Updater
As a practical application of the API, I
recently implemented a ghost updater.
On every system I use, my Git repository
clones are always up to date, thanks to
the GitMeta tool [4] that I introduced in
this column last year. Unfortunately, I
occasionally forget to execute git push
on my home computer, and this means
that I have some local changes that I
have not uploaded to the Git server and
which I can’t easily access using my lap-
top in a hotel room because my home
computer lives behind a firewall.

So, I wrote the Dropbox daemon script
in Listing 4, which runs on my home

Figure 3: The user confirms that they trust

the Perl application to manage their Drop-

box data.

Figure 4: The Mojolicious server serves up a login link that points to dropbox.com.

Figure 5: After the user has completed the login, dropbox.com returns control to the Mojoli-

cious server, which stores the token data in a YAML file.

Figure 6: The YAML file with the access token

and access secret.

01 �#############################

02 �# MyDropBox ‑‑ Dropbox access

03 �# with stored credentials

04 �# Mike Schilli, 2011

05 �# (m@perlmeister.com)

06 �#############################

07 �package MyDropbox;

08 �use strict;

09 �use base 'Net::Dropbox::API';

10 �use YAML qw(LoadFile);

11

�12 �my $dev_key =

13 � "iyaiu823ajksgwf";

14 �my $dev_secret =

15 � "zlkj32lkj2kl3dp";

16 �my ($home) = glob '~';

17 �my $CFG_FILE =

18 � "$home/.dropbox.yml";

19

�20 �#############################

21 �sub new {

22 �#############################

23 � my ($class) = @_;

24

�25 � my $box =

26 � Net::Dropbox::API‑>new(

27 � {

28 � key => $dev_key,

29 � secret => $dev_secret,

30 � }

31 �);

32

�33 � my $cfg =

34 � LoadFile($CFG_FILE);

35 � $box‑>access_token(

36 � $cfg‑>{access_token});

37 � $box‑>access_secret(

38 � $cfg‑>{access_secret});

39

�40 � bless $box, $class;

41 �}

42

�43 �1;

 Listing 2: MyDropbox.pm

Features
Perl: Dropbox

65linux-magazine.com | Linuxpromagazine.com	I ssue 129	A ugust 2011

063-067_Perl.indd 65 6/14/11 4:17:10 PM

computer. It is launched by dropbox‑git‑
getter start, then puts itself in the back-
ground and periodically (every 60 sec-
onds) checks the gitgetter/requests.txt
file in the Dropbox folder for changes. If
the Dropbox user somewhere on Web
needs a file from their home computer,
they just need to append the desired file
path to the gitgetter/request.txt file in
the Dropbox.

Within a minute, the daemon running
on the home computer then notices the
change, extracts the new request line,

and checks whether it really relates to a
file in the Git repositories all located
under a common path. If so, it picks up
the required file from the local file sys-
tem on the home computer, uses the
Dropbox API to put it into the Dropbox,
deletes the request from requests.txt,
and deposits a modified version of the
request file in the Dropbox.

Because Dropbox refuses to upload
empty files, the daemon leaves a com-
ment at the head of the file if there are
no requests left to complete.

Listing 4 runs in the background after
the start command and, thanks to
App::Daemon from CPAN, also supports
stop and status to shut down the dae-
mon or determine its status. It uses Log-
4perl to log its activities in the /tmp/
dropbox‑gitgetter.log file, and ‑X
launches the script in the foreground to
facilitate troubleshooting if something
doesn’t work as intended.

In the infinite loop starting in line 33,
Listing 4 calls the Dropbox object’s
list() method every 60 seconds to dis-
cover whether anything has changed
below the /gitgetter Dropbox directory.
But instead of asking the Dropbox server
to send the whole directory hierarchy
across the wire, the script uses an effi-
cient hashing method. On completed re-
quests, besides the desired results, the
Dropbox API also returns a 32-byte hex

string that reflects
the status of file
hierarchy for
list() requests. If
you want to save
bandwidth, you
can include the
hash with the next
call, and the Drop-
box server will
simply return an
HTTP Code 403
(“not modified”)
instead of data if
there were no re-
cent modifica-

tions, and the script can go back to sleep
until the next round.

Beware of Baddies
If there’s news, the request_handler()
function gets called in line 51 and uses
the getfile() method in line 64 to pick
up the content of the gitgetter/re‑
quests.txt file from the Dropbox server
via the API. A for loop then iterates over
the lines of the file, removing comments
and ignoring empty lines. The realpath()
function from the treasure trove of the
Cwd module, makes sure that no mali-
cious characters are hiding out in the
identified lines that could trick the dae-
mon into wandering down spurious
paths and serving up the files that reside
in them. To accomplish this, the script
appends the requested path to the previ-
ously specified Git directory and then
checks if a realpath of the result is still a
location inside the Git directory.

This is important to prevent an at-
tacker who has compromised the Drop-
box account, or even taken control of the
Dropbox server, mapping the entire local
filesystem; at most, they can then see
the explicitly authorized path to the Git
repositories, the server versions of which
are publicly available anyway in my
case.

If the daemon authorizes the release of
a file, putfile() in line 94 drops it into
the Dropbox’s /gitgetter directory. After
processing requests, the blurt command
of the Sysadm::Install CPAN module in
line 102 writes an empty requests.txt
with a comment line back to the Drop-
box to avoid the daemon again pushing
the file next time around.

Installation
The rat’s tail of required modules is ei-
ther available via your distribution’s
package manager (e.g., libapp-daemon-
perl, liblog-log4perl, etc., for Ubuntu), or
you can use a CPAN shell.

The CPAN Net::Dropbox::API module
didn’t support the hash-based Dropbox

01 �#!/usr/local/bin/perl ‑w

02 �#############################

03 �# dropbox‑dump ‑‑

04 �# Dump dropbox content

05 �# Mike Schilli, 2011

06 �# (m@perlmeister.com)

07 �#############################

08 �use strict;

09 �use MyDropbox;

10 �use Data::Dumper;

11

�12 �my $box = MyDropbox‑>new();

13 �$box‑>context("dropbox");

14

�15 �my $href =

16 � $box‑>list("/Photos");

17

�18 �$Data::Dumper::Indent = 1;

19 �print Dumper($href);

 Listing 3: dropbox-dump

Figure 7: The list() call returns a data structure with Dropbox content.

Figure 8: A request to the dropbox daemon to upload a forgotten file. Figure 9: Later, the daemon has smuggled in the required file.

66

Features
Perl: Dropbox

August 2011	I ssue 129	 linux-magazine.com | Linuxpromagazine.com	

063-067_Perl.indd 66 6/14/11 4:17:11 PM

query for modified files when I wrote
this article, so I simply forked the project
on Github, added the function, and
asked the author to add the patch to the
main line. If this hasn’t happened by the
time this issue goes to press, you can do
so by downloading the tarball with the
modified module from Github [5].

To use the Dropbox API, programmers
need a developer key, which you can re-
quest [3] after supplying your email ad-
dress. You need to modify the $dev_key
and $dev_secret variables in the listings,
but then you’re up and running.

Be Careful!
The advantage of Dropbox is quite obvi-
ously its simple handling. Even computer
newbies can store data and pick it up
elsewhere later. An example of a proce-

dure for communications between devel-
opers and web designers uses Dropbox to
make changes to a Git repository avail-
able to project contributors who find
using a repository too challenging [6].

Incidentally, although dropbox.com en-
sures users that the files it stores are en-

crypted, and not even readable for Drop-
box staff, a report [7] claims that this is
not true. Whatever the case may be, the
old adage still applies: Confidential data
is still best kept on your local disk, and
the cloud still needs to work out the kinks
of cloudy security concepts. nnn

001 �#!/usr/local/bin/perl ‑w

002 �#############################

003 �# dropbox‑gitgetter ‑‑ Get

004 �# forgotten git updates

005 �# via dropbox.com

006 �# Mike Schilli, 2011

007 �# (m@perlmeister.com)

008 �#############################

009 �use strict;

010 �use MyDropbox;

011 �use App::Daemon

012 � qw(daemonize);

013 �use Log::Log4perl qw(:easy);

014 �use HTTP::Status

015 � qw(:constants);

016 �use File::Temp qw(tempfile);

017 �use Cwd qw(realpath);

018 �use Sysadm::Install qw(:all);

019 �use File::Basename;

020

�021 �daemonize();

022

�023 �my $mod_hash = undef;

024 �my $poll_interval = 60;

025

�026 �my $box = MyDropbox‑>new();

027 �$box‑>context("dropbox");

028

�029 �my ($home) = glob "~";

030 �my $gitdir =

031 � realpath "$home/git";

032

�033 �while (1) {

034 � my @hash_args = ();

035 � @hash_args =

036 � (hash => $mod_hash)

037 � if defined $mod_hash;

038

�039 � my $href = $box‑>list(

040 � {@hash_args},

041 � "/gitgetter"

042 �);

043

�044 � if (

045 � $href‑>{http_response_code}

046 � eq HTTP_NOT_MODIFIED)

047 � {

048 � DEBUG "Not modified";

049 � } else {

050 � $mod_hash = $href‑>{hash};

051 � request_handler($box);

052 � }

053

�054 � DEBUG

055 �"Sleeping ${poll_interval}s";

056 � sleep $poll_interval;

057 �}

058

�059 �#############################

060 �sub request_handler {

061 �#############################

062 � my ($box) = @_;

063

�064 � my $content = $box‑>getfile(

065 � "gitgetter/requests.txt");

066

�067 � my $pushed = 0;

068

�069 � for my $line (split /\n/,

070 � $content)

071 � {

072 � $line =~ s/#.*//;

073 � next if $line =~ /^\s*$/;

074 � DEBUG

075 � "Found request: '$line'";

076

�077 � my $file = realpath(

078 � "$gitdir/$line");

079 � if ($file !~ /^$gitdir/) {

080 � ERROR

081 � "Path $file denied.";

082 � next;

083 � }

084

�085 � DEBUG "Delivering $file";

086

�087 � if (!‑f $file) {

088 � ERROR

089 � "$file doesn't exist";

090 � next;

091 � }

092

�093 � my $href =

094 � $box‑>putfile($file,

095 � "gitgetter");

096 � $pushed++;

097 � }

098

�099 � if ($pushed) {

100 � my ($fh, $tmpfile) =

101 � tempfile(UNLINK => 1);

102 � blurt

103 � "# pending requests\n",

104 � $tmpfile;

105 � my $href =

106 � $box‑>putfile($tmpfile,

107 � "gitgetter",

108 � "requests.txt");

109 � }

110 �}

 Listing 4: dropbox-gitgetter

[1]	� Listings for this article:
http://​www.​linux‑magazine.​com/​
Resources/​Article‑Code

[2]	� OAuth:
http://​en.​wikipedia.​org/​wiki/​Oauth

[3]	� Dropbox for Developers: https://​www.​
dropbox.​com/​developers/​quickstart

[4]	� “Managing Git” by Michael Schilli,
Linux Magazine, September 2010, pg.
50: http://​www.​linux‑magazine.​com/​
Issues/​2010/​118/​PERL‑MANAGING‑GIT

[5]	� Net::Dropbox 1.4_01, including the
hash function: http://​github.​com/​
mschilli/​Net‑‑Dropbox/​tarball/​1.​4_01

[6]	� Dropbox + git = Designer Luv” by Ken
Mayer: http://​pivotallabs.​com/​users/​
ken/​blog/​articles/​
1637‑dropbox‑git‑designer‑luv

[7]	� “Dropbox Lied to Users About Data
Security, Complaint to FTC Alleges”:
http://​www.​wired.​com/​threatlevel/​
2011/​05/​dropbox‑ftc/

 Info

Features
Perl: Dropbox

67linux-magazine.com | Linuxpromagazine.com	I ssue 129	A ugust 2011

063-067_Perl.indd 67 6/14/11 4:17:11 PM

