
E
ven though you might enjoy writ-
ing greeting cards by hand and
mailing them, you might consider
saving yourself the trouble of

writing the addresses on the envelopes
and use sticky labels instead. Practical
laser printer labels on letter-sized sheets
(Figure 1) cost about half a cent apiece
(15 cents a sheet). Not only do they

speed up the postal shipping pro-
cess, they are also useful for

labeling wires of elec-
tronic gadgets.

The Perl script
in this issue
reads comma-
separated
text and
prints it

line by line on the labels. Of course, you
don’t have to restrict yourself to ad-
dresses. How do you like the idea of la-
beling the mess of cables beneath your
desk to help the overworked home net-
work administrator find the router’s
power supply next time something goes
wrong?

Preconfigured Sizes
OpenOffice Writer already supports label
formats from a variety of vendors, and in
the New | Labels menu (Figure 2), you
can create tabular documents to match.
In the dialog in Figure 3, you just need
to enter the manufacturer and product
code for the label you choose, and the
dimensions are guaranteed to fit. After
creating these documents, you just need
to add the body text and press “Print,”
which is admittedly somewhat easier
than writing your own printer position-
ing program. Because OpenOffice.org
stores its documents in the open ODF
format, you can extract the table data
from a CSV file with a Perl script before
injecting the data into the document.

ZIP Archive .odt
Before your address list can be added to
the label table, you need to create a tem-
plate in OpenOffice and type a couple of

Mike Schilli works as a software engineer
with Yahoo! in Sunnyvale, California. He
can be contacted at mschilli@perl­
meister.com. Mike’s homepage can be
found at http:// perlmeister. com.

 MIke SchIllI

Don’t write it, stick it!

Independent
Label

OpenOffice offers a selection of preconfigured formats for

users who need to print their own self-adhesive labels. Perl

feeds the address data to the document. By Mike Schilli

Features
Perl: OpenOffice Label Merge

JUNE 2011 IssUE 127 lINUx-magazINE.com | lINUxpromagazINE.com 60

060-064_perl.indd 60 4/11/11 11:21:51 PM

test strings (Figure 4). As the unzip com-
mand in Figure 5 shows, the resulting
document, saved as template.odt, com-
prises a ZIP archive with XML files, the
most interesting of which, content.xml,
is the text content of the document with
XML markups.

Calling the script in Listing 1 by typing
oo‑dumper template.odt then reveals the
document content and the markup struc-
tures for the strings entered previously
by the user in the table elements.

The script pulls in the CPAN
OpenOffice::OODoc module and calls its
constructor ooDocument() with the name
of the file to be investigated. Line 18 de-
fines "content" as the document member;
in other words, I’m interested in the doc-
ument content, not the external headers,
footers, reusable style definitions, or
metadata.

exploring XMl
The selectElements method launches an
XPath query that reveals all the XML ele-
ments inside the office:body tag – that
is, the text document itself. Documents
only contain a single body; however,
OpenOffice::OODoc insists that the left-
hand side of the assignment in line 21
suggests a list context, which explains
the parentheses around $element. The re-
turn value is a reference to a specific
OpenOffice::OODoc::Element, which also
understands the methods of executing
the XML parser, XML::Twig, by inheri-
tance. This slightly quirky XML module,
which I wrote about in an earlier Perl
column [3], provides the _dump()
method, which generates the text format
of the XML subtree and returns it as a
string.

In Figure 6, the
office:text tag
below office:body
contains a couple
of sequence decla-
rations followed
by text:p-type
text. This line is a
row in a table
with three col-
umns, for which
elements of
draw:frame draw
the frames. These
frames, in turn,
contain
draw:text‑box ele-
ments with text:p
elements where
the test text (test1,
test2, etc.) resides.

An XPath query like

//office:body/office:text/text:p

retrieves all the lines in the table (which
contain the column frames); whereas,
the table elements (three per row) are
stored relative to this below:

.../draw:frame/draw:text‑box/text:p

The script in Listing 2 uses the first
XPath query to add as many lines to the
table as needed for the address data to
be printed. The second query then
browses all the labels and injects the text
data into them.

To open the .odt template, the script
uses the ooDocument() constructor on the
ready.odt file which was created previ-
ously in line 31 by copying template.odt

with the cp function from the Sysadm::
Install module.

The currently available version of
OpenOffice::OODoc contains a bug that
processes UTF8-encoded documents in-
correctly if they contain non-ASCII char-
acters. The

local_encoding => ""

setting in line 36 provides a temporary
fix, but the value should be "utf8".

Adding the Address
Data
The raw data must be stored in an ad‑
dress‑book.csv file (Figure 7), where the
label‑writer script can pick them up line
by line with the getline() function from
the CPAN Text::CSV_XS module.

The addresses_scan function opens the
file with the :encoding(utf8) pragma,

Figure 1: Laser printer labels: 30 per sheet, 4,200 a box.

Figure 2: The Labels entry in OpenOffice Write takes you to a treasure

trove of label formats.

Figure 3: Besides the vendor, you can select a specific label product.

Features
Perl: OpenOffice Label Merge

lINUx-magazINE.com | lINUxpromagazINE.com IssUE 127 JUNE 2011 61

060-064_perl.indd 61 4/11/11 11:21:52 PM

which allows Perl to parse UTF-8-encoded
characters correctly in the file and set the
UTF-8 flag for them in its data structures.

In each loop iteration, the $row vari-
able points to an array whose elements

represent the comma-separated line en-
tries in the CSV file. To leave enough
space on the left side of the label, where
the text entry goes later on, the replace
command within the for loop starting on

line 99 inserts a blank in front of every
line on the label. Line 104 concatenates
the lines of the address to create a string
with line breaks and pushes it to the end
of the @addresses array, which the func-

www.linux-magazine.com/single-issues

Missed an Issue ?
You’re in luck. Most back issues are still available.
Order now (before they’re gone)!

lmi_1-2q_single.indd 1 25.03.2011 10:39:22 Uhr

001 #!/usr/local/bin/perl ‑w

002 #############################

003 # label‑writer ‑ Use

004 # OpenOffice to write

005 # address labels

006 # Mike Schilli, 2011

007 # (m@perlmeister.com)

008 #############################

009 use strict;

010 use OpenOffice::OODoc;

011 use Sysadm::Install

012 qw(:all);

013 use Text::CSV_XS;

014 use POSIX qw(ceil);

015

 016 my $template =

017 "template.odt";

018 my $file = "ready.odt";

019 my $addr_book =

020 "address‑book.csv";

021 my $labels_per_page = 30;

022

 023 my @addresses =

024 addresses_scan($addr_book);

025

 026 my $addtl_pages = ceil(

027 scalar @addresses /

028 $labels_per_page) ‑ 1;

029

 030 # Put template in place

031 cp $template, $file;

032

 033 my $doc = ooDocument(

034 file => $file,

035 type => "content",

036 local_encoding => "",

037);

038

 039 # Extend document as

040 # necessary

041 my @rows =

042 $doc‑>selectElements(

043 '//office:body/' .

044 'office:text/text:p'

045);

046

 047 for (1 .. $addtl_pages) {

048 for my $row (@rows) {

049 $doc‑>replicateElement(

050 $row, "body");

051 }

052 }

053

 054 # All labels, including new ones

055 my @labels =

056 $doc‑>selectElements(

057 '//office:body/' .

058 'office:text/text:p/' .

059 'draw:frame/' .

060 'draw:text‑box/text:p'

061);

062

 063 my $addr_idx = 0;

064

 065 for my $label (@labels) {

066 $doc‑>setStyle($label,

067 "P1");

068 $doc‑>setText($label,

069 $addresses[$addr_idx]);

070 $addr_idx++;

071 $addr_idx = 0

072 if $addr_idx >

073 $#addresses;

074 }

075

 076 $doc‑>save();

077

 078 #############################

079 sub addresses_scan {

080 #############################

081 my ($addr_book) = @_;

082

 083 my @addresses = ();

084

 085 open(my $fh,

086 "<:encoding(utf8)",

087 $addr_book)

088 or die "$addr_book: $!";

089

 090 my $csv = Text::CSV_XS‑>new(

091 { binary => 1 })

092 or die "Cannot use CSV: "

093 . Text::CSV‑>error_diag();

094

 095 while (my $row =

096 $csv‑>getline($fh)) {

097 unshift @$row, "";

098

 099 for (@$row) {

100 s/^/ /;

101 }

102

 103 push @addresses,

104 join("\n", @$row);

105 }

106 close $fh;

107

 108 return @addresses;

109 }

 lIStIng 2: label-writer

01 #!/usr/local/bin/perl ‑w

02 #############################

03 # oo‑dumper ‑ Dump an

04 # OpenOffice document

05 # Mike Schilli, 2011

06 # (m@perlmeister.com)

07 #############################

08 use strict;

09 use OpenOffice::OODoc;

10

 11 (my $file) = @ARGV;

12

 13 die "usage: $0 file"

14 unless defined $file;

15

 16 my $doc = ooDocument(

17 file => $file,

18 member => "content",

19);

20

 21 (my $element) =

22 $doc‑>selectElements(

23 '//office:body');

24

 25 print $element‑>_dump();

 lIStIng 1: oo-dumper

Features
Perl: OpenOffice Label Merge

JUNE 2011 IssUE 127 lINUx-magazINE.com | lINUxpromagazINE.com 62

060-064_perl.indd 62 4/11/11 11:21:54 PM

tion passes back to the main program
after completing its work.

Waste not, Want not!
To avoid wasting labels, the script al-
ways completely fills a letter-sized page;
if needed, by repeating the addresses in
the CSV file. If the address database has
more than 30 entries, Listing 2 has to
add additional pages at the end of the

document. In this case, too, it will fill up
any space left over on the page with re-
peat data.

Line 21 refers to the predefined num-
ber of labels per page, and line 26 calcu-
lates the required number of pages in the
label document by factoring in the size
of the address database. The ceil()
function from the POSIX module rounds
up to the next integer in case of frac-

tions. The number of $addtl_pages (addi-
tional pages) is then one less because
the template document created by the
user already provides the first page.

All the table rows on the test page are
lined up in the @rows array after the first
XPath query in line 42, and for each ad-
ditional page to be created, the for loop
from line 47 to 52 iterates over these row
entries, duplicates them with replica‑

www.linux-magazine.com/single-issues

Missed an Issue ?
You’re in luck. Most back issues are still available.
Order now (before they’re gone)!

lmi_1-2q_single.indd 1 25.03.2011 10:39:22 Uhr

Figure 5: A call to unzip reveals the XML files contained in the

OpenOffice document.

Figure 4: The user types sample texts in the text fields of the OpenOffice

document.

Features
Perl: OpenOffice Label Merge

060-064_perl.indd 63 4/11/11 11:21:54 PM

teElement(), and uses the "body" param-
eter to tell the function to add duplicates
at the end of the document body. The
newly created lines are exact copies of
the lines on the first page; that is, they
still contain test data or are empty.

The second XPath query in line 56 re-
trieves all the table elements (three per
line, including all the elements on the
newly created pages) in the document
and stores them in the @labels array. The
for loop in line 65 then goes through
and assigns the style "P1" to them. The
dump in Figure 6 shows that this applies
the Bitstream Vera Sans font style to the
text. The subsequent call to setText()
picks up the next record from the ad-
dress file and stores the corresponding

text string in the table
element currently being
processed.

The loop continu-
ously increments the
$addr_idx index vari-
able to the address
array, starting at zero,
and resets it to zero
again when it reaches
the end of the address
database to restart with
the first address.

correct
Insertion
The save() method
then saves the changes
to ready.odt, the target
file, which have only
been made in volatile
memory thus far to
disk. When the user
opens the file in Open-
Office (I tested this
with version 3.2), the

document looks like Figure 8.
All you need to do now is insert a page

with sticky labels into the printer and se-
lect Print in OpenOffice Writer. To avoid
wasting labels, it makes sense to print a
trial page on a normal sheet of paper
then hold it up to the light with the sheet
of labels to check the alignment.

To find out whether the label sheet has
to be face up or face down for the printer
to print onto the labels and, at the same
time, discover the direction in which the
printer feeds the paper, put a pencil
mark in one corner before printing the
file. Next, you can print your test page,
look at the position of the mark on the
final result, and do the extremely com-
plex geometric transformations in your

head to get things right.
To install the scripts,

you need the
OpenOffice::OODoc,
Sysadm::Install, and
Text::CSV_XS modules,
the latter being a speed-
optimized version of
the legacy Text::CSV. A
CPAN shell will handle
the install if these mod-
ules are not available in
your choice of distribu-
tion. Next, open the
OpenOffice Writer ap-

plication and select the label format you
need in the Labels dialog. You need to
modify the value of 30 labels per line set
in line 21 of Listing 2 to match your label
format.

If something goes wrong, it is a good
idea to analyze the ODF file with oo-
dumper and adjust for any deviations
from the format by creating matching
XPath queries.

After filling out a couple of test fields,
store the results as template.odt. The la-
bel-writer script should then parse a
UTF-8-encoded address‑book.csv address
file and create the read.odt output,
which you then send to the printer.

A number of other applications come
to mind for this script: labeling cables in
data centers or machine numbers for
asset management. Or, I might just put
on my accountant’s hat, slip on some
oversleeves, and attach a label to all of
the books in my private collection, so I
know where they belong when I’m done
reading them [5]. nnn

Figure 9: The printed labels.

Figure 7: Address data in CSV format.

Figure 6: The _dump() method shows how the XML document is

nested.

Figure 8: After running the script, the OpenOffice file ready.odt

contains all the inserted addresses.

[1] Listings for this article:
http:// www. linux­magazine. com/
 Resources/ Article­Code

[2] “A Simple Way to Do Labels in
Open Office Writer” by Solveig Haug-
land, http:// openoffice. blogs. com/
 openoffice/ 2007/ 06/ a­simple­way­to.
 html

[3] “Perl: XML Parsers” by Michael
Schilli, Linux Magazine, September
2005, http:// www. linux­magazine.
 com/ Issues/ 2005/ 58/
 SPOILED­FOR­CHOICE

[4] “The Perl OpenDocument Connec-
tor”, Jean-Marie Gouarné, The Perl
Review, http://www.theperlreview.
com/SamplePages/ThePerlReview­
v3i1.p18.pdf

[5] “Perl: OpenOffice Access” by Mi-
chael Schilli, Linux Magazine, No-
vember 2004, pg. 72

 Info

Features
Perl: OpenOffice Label Merge

JUNE 2011 IssUE 127 lINUx-magazINE.com | lINUxpromagazINE.com 64

060-064_perl.indd 64 4/11/11 11:21:55 PM

