
F
resh browsers are here! Opera
11.00 has been released and Fire-
fox 4 is in solid beta, and they
both include improved support for

HTML5, JavaScript (faster is better), and
some newer technologies like WebSock-
ets, Web Workers, and Web Storage.
These features are designed to address
the simple fact that people now expect
the web to provide applications and mul-
timedia (ideally without needing third-
party closed source plugins like Flash).

These three web technologies address
some shortcomings in web browsers, but
like most new technologies, they also
create a completely new set of security
problems. I’ll describe how they can be
used to create a massive denial-of-ser-
vice network for next to nothing and
how they can be used to track people.

Web Storage and HTML5
Until recently, the only reliable method
for storing (and retrieving) data from a
web client was cookies. Cookies are a
few kilobytes in size typically, so if you
want to store a large amount of data on a
client (such as an image or a document),
you’d have to split it up across many
cookies and hope that none get deleted
or replaced. HTML5 introduces Web
Storage, which comprises Session Stor-
age, Local Storage, Global Storage, and
Database Storage (using SQLite).

Like cookies, these storage objects are
generally bound to the domain they
came from, which should largely prevent
sites from stealing data or using Web
Storage to pass data around easily. How-
ever, unlike cookies, Web Storage pro-
vides new ways to track users in a very
persistent manner (e.g., you set a key
called “tracking” with a unique string)
[1] [2]. This feature can’t directly be
used to aid in botnet creation, but it does

give attackers a way to store data and
then retrieve it later.

WebSocket
WebSocket is such a problem that cur-
rently (as of December 2010) Opera 11.00
and Firefox 4 beta 8 both ship with it
disabled. The reason is WebSocket is de-
signed to allow a web browser to make a
request to a third-party site that is gener-
ated from within a JavaScript program,
for example. For the last few years, Fire-
fox and other browser vendors have
been working to prevent such “cross-ori-
gin requests” and “cross-site request
forgeries” (i.e., attacker.com causing
your browser to get something from
yourbank.com and then interacting with
it).

Making WebSocket “safe” for use
has been attempted by requiring
the server to reply to such re-
quests in a way that shows
it’s okay, but this fails to
take into account two
problems. The first
problem is HTTP
header splitting;
some web appli-
cations and
servers can be
manipulated
(e.g., through
the request
string) to cre-
ate a custom

HTTP header, which is sent back to the
client (which can contain cookies, weird
caching values, etc.) and could include
the WebSocket reply data needed by the
client.

The second problem is simply that a
client can make a lot of WebSocket re-
quests (i.e., several thousand per sec-
ond), turning this into a great denial-of-
service platform [3]. With this approach,
you simply get people to visit a web
page that you control and, as long as

that page is open,
the browser

will hammer
away at
whatever
site you
want taken
down.

Alterna-
tively, this

feature
can be

HTML5 – Building a better botnet

Web Attacks 3.0
What a tangled web we weave. New web technologies

address shortcomings in web browsers but create new

problems as well. By Kurt Seifried

Kurt Seifried is an Information Secu-
rity Consultant specializing in Linux
and networks since 1996. He often
wonders how it is that technology
works on a large scale but often fails on
a small scale.

 Kurt Seifried

Features
Security Lessons: HTML5

66 March 2011	 Issue 124	

066-067_kurt.indd 66 18.01.2011 19:14:56 Uhr

used for port scanning. Because the
WebSocket interface takes a variable
amount of time to return, depending on
whether the connection fails, connects,
or is refused, you can determine the port
status. An example of such a scanning
tool is JS-Recon [4], which you can use
to port scan your local machine or your
local network or to discover the private
IP address of the system.

Note that determining the network ad-
dress of a user is made easier by the fact
that most of us are behind NAT boxes
using 192.168.*.* (the default for virtu-
ally all home routers) or 10.*.*.* (almost
no one uses 172.16.0.0 through
172.31.255.255). Simply scanning
192.168.*.1 and 192.168.*.254 will give
you a very good chance of finding the
router used to provide network access.

To top it off, one security vulnerability
in WebSocket allows attackers to attack
web-based proxies or transparent inter-
cepting proxies because many of them
don’t fully understand how to handle
WebSocket connections [5] yet. By poi-
soning the cache of a web proxy for an
item such as http://​www.google-analyt-
ics.com/​ga.js, an attacker can send mali-
cious code to any victim accessing a
website that uses Google Analytics.

Web Workers
Previously, most JavaScript programs
online were not very big and did not run
for long periods. Now I have a web
browser open with Gmail in a tab for
days at a time. The latest figure I can
find lists Gmail as 443,000 lines of cus-
tom JavaScript.

With the use of Web Workers, you can
now create and destroy threads and split
up the work among them. Thus, pro-
grams can be split into modules and run
for a very long time and can also take
advantage of multicore processors
(which is basically everything except
mobile phones, but dual-core mobile
phones are coming). Ultimately, this
means that web-based JavaScript appli-
cations will be able to behave more like
traditional applications.

Although JavaScript is slow compared
with well-written C or C++ code, it can
still generate a huge number of requests
on even a low-end machine, turning the
system into an effective denial-of-service
platform. All the attacker needs to do is
keep you on their web page, which is

not hard to do with forum discussion
sites or online games.

Easy XSS –
history.pushState()
A lot of these attacks work much better
when combined with XSS attacks (inject-
ing hostile content into trusted web-
sites), so is there a new HTML5 compo-
nent that makes this easier? Of course.
The new history.pushState() function
allows the URL in the history to be modi-
fied. Unfortunately, it will also work on
the current URL, thereby allowing an at-
tacker to rewrite the address bar – which
is again something most browsers have
been attempting to prevent for years [6].

Work as Payment
The ability to execute long-running pro-
cesses and make requests to arbitrary
websites leads to an interesting possibil-
ity: compute time as a micro-payment
system. However, all of the use cases I
can think of essentially involve spam or
some other unwanted activity, such as
denial-of-service attacks against sites.

One example of this is d0z.me [7], a
URL-shortening service. You simply type
in the URL you want shortened (as
usual) and the URL you want to attack.
When a user clicks on the d0z.me URL,
the program redirects the user to the
long URL. However, it will embed the
site within an IFRAME, while another
IFRAME constantly reloads the site that’s
being attacked. This approach, com-
bined with social network sites like Red-
dit, could easily result in a few hundred
or thousand people attacking a site.

One Last Kick at HTML5
Because most sites are getting better at
dealing with distributed denial-of-service

attacks, attackers will need to invest
more time in creating more involved at-
tacks.

Instead of simply sending a request for
the front page, for example, they can fill
out a contact form and hit submit,
thereby flooding the support account or
the sales account with junk. HTML5 of-
fers a drag-and-drop interface. This,
combined with interactive content, such
as a game, could allow the attacker to
get clients to fill out the form (in the
background, of course) and submit it re-
peatedly.

Conclusion
As usual, the guys developing new web
technologies didn’t give much thought
to security problems, which is bad if
you’re a regular user, but great if you’re
a bad guy [8] [9] or you can do cool
things with HTML5 (like building a dis-
tributed password cracker).

In parting, I leave you with this inter-
view with Douglas Crockford (the guy
who created JSLint and helped develop
JSON) [10]. nnn

Figure 1: The d0z.me website.

Features
Security Lessons: HTML5

linux-magazine.com | Linuxpromagazine.com	 Issue 124	 March 2011 67

[1]	� Evercookie:
http://​samy.​pl/​evercookie/

[2]	� Nevercookie:
http://​www.​anonymizer.​com/​
learningcenter/​#​lc_labs

[3]	� Performing DDoS Attacks with
HTML5: http://​blog.​andlabs.​org/​2010/​
12/​performing‑ddos‑attacks‑with‑ht
ml5.​html

[4]	� JS-Recon port scanner: http://​www.​
andlabs.​org/​tools/​jsrecon.​html

[5]	� WebSocket: https://​developer.​
mozilla.​org/​en/​WebSockets

[6]	� history.pushState():
http://​samuli.​hakoniemi.​net/​how‑to‑c
onceal‑xss‑injection‑in‑html5/

[7]	� d0z.me: http://​it.​slashdot.​org/​story/​
10/​12/​20/​2248219/​D0zme‑mdash‑the‑
Evil‑URL‑Shortener

[8]	� Attacking with HTML5:
http://​www.​slideshare.​net/​clubhack/​
attacking‑with‑html5lava‑kumar

[9]	� HTML5 Security Cheatsheet Project:
http://​code.​google.​com/​p/​
html5security/

[10]	�Douglas Crockford on JavaScript and
HTML5: http://​www.​webmonkey.​
com/​2010/​05/​douglas‑crockford‑on‑ja
vascript‑and‑html5/

 Info

066-067_kurt.indd 67 18.01.2011 19:14:58 Uhr

