
I was looking at my server backups 
the other day and suddenly realized 
I had no backups of the logfiles – 

you know, all the stuff in /var/log/ that 
you ignore until something breaks. Also, 
I realized I had no idea whether logging 
was actually working, so maybe I should 
go about fixing this.

Why Logging Locally Isn’t 
Secure or Reliable
By definition, attackers who gain access 
to your system can monkey around with 
the logfiles, modifying them or simply 
deleting them altogether if they’re not 
worried about being quiet. This can leave 
you with no log of how they broke in or 
what they did, or even that you have suf-
fered a break in. Also, your logging can 
simply break and stop writing logs, and, 
unless you’re checking those logs, you’ll 
never notice.

This old problem has a simple solu-
tion: You just log to a remote host that is 
designed to hold the logfiles securely. 
The syslog ‑r option will specifically let 

syslog listen to the network and accept 
syslog messages from remote hosts. 
Problem solved, right?

Not really. The main problem is that 
syslog uses UDP for message transport, 
and UDP doesn’t guarantee delivery. So, 
for example, if you accidentally firewall 
syslog, the messages could simply be 
dropped without any warning. If you 
want to send logs across networks you 
don’t trust (e.g., the Internet), you can’t 
be sure that an attacker hasn’t injected 
log messages, because spoofing UDP is 
much easier than TCP in that no three-
way handshake or sequence ID is 
needed. Also, if an attacker is really on 
the ball, he or she can alter messages in 
transit, without being detected (the mes-
sages are not protected in any way).

Why Not SSL Wrap It?
Trick question. Applications like Stunnel 
only play nicely with TCP-based ser-
vices. If you’re utterly determined not to 
run rsyslog for some reason, I suppose 
you could set up a VPN (e.g., 

OpenVPN), but that still won’t guaran-
tee message delivery because 

syslog will still be using 
UDP.

Rsyslog to the 
Rescue

The good news 
is that rsys-
log [1] is a 

drop-in replacement for sysklogd, and if 
you’re running a recent Debian, Ubuntu, 
or Fedora, it’s the default logging pack-
age. The bad news is that you will most 
likely need to upgrade it if you want the 
more advanced features. (Fedora ships 
version 2.0.6; the latest stable release is 
5.2.0.)

For those of you on a different flavor 
of Linux, chances are your vendor ships 
rsyslog, and you can simply install it 
with yum or whatever package manager 
you use (e.g., emerge ‑va rsyslog on Gen-
too Linux). Downloading the source and 
compiling it is not hard; however, you 
should make sure that you add support 
for:

./configure ‑‑enable‑gnutls ^^

   ‑‑enable‑mysql

make

make install

Of course, you will need the gnutls-devel 
and mysql-devel packages installed on 
your system for this to work. Once com-
piled, you need to install rsyslog. This 
can be tricky because you will need to 
remove the existing rsyslog or sysklogd 
package forcibly and ignore the resulting 
dependency complaints (initscripts, 
vixie-cron, cronie, etc.) that you will re-
ceive. Future updates of these packages 
could also be an issue because a depen-
dency is missing. Unfortunately, most 
vendors are shipping very old versions 
of rsyslog. Once you have rsyslog com-
piled and installed, you will need to con-
figure it securely.

Guaranteed Delivery
The first thing rsyslog does right is use 

TCP, which is a much more reli-
able transport than UDP. The 
second thing rsyslog does is pro-

vide application-level acknowl-
edgment of messages. Thus, it pro-

vides a guarantee of message deliv-
ery, so even strange TCP errors won’t 

cause messages to disappear silently. To 
do this, it supports RELP (Reliable Event 

Might as well do it properly – rsyslog. By Kurt Seifried

Making sure your logs work

Secure Logging

Security Lessons: rsyslogSYSADMIN

54 iSSue 115 June 2010



Logging Protocol); configuration is triv-
ial on a client:

*.* :omrelp:10.1.2.3:2514

So, the first goal of ensuring that remote 
logging actually results in remote logging 
taking place is accomplished. Another 
advantage is that a central rsyslog server 
will correctly report the origin of a mes-
sage even if the sender is behind a NAT 
machine with other rsyslog clients (in 
other words, you will be able to tell 
them apart, which doesn’t work so well 
with other logging packages).

Secure Delivery
Secure delivery is essential; otherwise, 
an attacker can modify messages in tran-
sit or inject fake messages and cause all 
sorts of problems (like hard disk write 
error warnings every day at 3am that 
cause your pager to go off). Also, you 
don’t want an attacker eavesdropping on 
messages. For example, if a user acciden-
tally enters her password instead of her 
username, that password will be logged 
(and sent to whatever remote systems 
your logs go to), potentially exposing the 
password to an attacker with access to 
your network traffic. To address this, 
rsyslog supports TLS (Transport Layer 
Security) natively; all you need to do is 
edit rsyslog.conf [2].

This brings up about the only flaw I 
can find with rsyslog: the documenta-
tion. Generally speaking, the documen-
tation is good, but the examples are not 
always the best. In this case, the primary 
example shows the $InputTCPServer‑
StreamDriverAuthMode variable set to 
"anon", meaning no client authentica-
tion is taking place, which sort of defeats 
the whole point of using TLS to secure 

communications. If you look in the gtls 
Network Stream Driver documentation 
file, you will see that the mode you want 
to use is x509/name. This setting will 
cause rsyslog to validate the certificate 
and the name before allowing the client 
to communicate. Also, you should con-
figure this on the clients to ensure that 
an attacker can’t execute a man-in-the-
middle attack and impersonate a server 
(and thus harvest potentially sensitive 
log messages).

Note that support for the x509/name 
configuration directive only appeared in 
version 3.19.4 and later, so you’ll need 
to update Fedora (rsyslog 2.0.6), Debian 
(rsyslog 3.18.6), and Ubuntu 9.0.4 (rsys-
log 3.18.6), but not Ubuntu 9.10 (rsyslog 
4.2.0), to name a few versions of Linux.

Off-Peak Message Delivery
Real-time remote logging has one prob-
lem, which is that network traffic will be 
steady and in some cases quite heavy 
(someone scans servers for weak ac-
counts, a sudden slew of errors, etc.). If 
you have branch offices or remote loca-
tions that you want to tie into a central 
logging system, you could find yourself 
taking up a significant portion of upload 
bandwidth during business hours (not 
all the world has high-speed Internet like 
Japan and Norway yet). Fortunately, 
rsyslog addresses this with off-peak mes-
sage delivery (Listing 1).

This will send log data to 10.1.2.3 be-
tween 10pm and 4am; otherwise, it will 
spool the logfile locally for later trans-
missions. The ActionQueueSaveOnShut‑
down is important; without it, you will 
lose data if you shut down rsyslog, be-
cause it will not write data in memory to 
the spool. The other benefit of off-peak 
message delivery is that you can stagger 
delivery times for servers so your central 
logging server doesn’t get flooded by cli-
ents [3].

Transitioning to Rsyslog
What if you want to start using rsyslog, 
but you have older syslog clients that 
you can’t yet upgrade? That’s easy; run a 
central rsyslog server with support for 
UDP messages and upgrade the clients 
when you can. On the central rsyslog 
server, you simply:

@ModLoad imudp

$InputUDPServerRun 514

Because rsyslog is a module and sup-
ports multiple inputs (and outputs), you 
can easily run it with support for multi-
ple client types (UDP, TCP, RELP, etc.).

I’m Stuck with an Older 
Rsyslog
If you are truly stuck with an older rsys-
log, the good news is that you can at 
least use Stunnel to SSL wrap it. Red Hat 
has a knowledge base article with de-
tailed instructions [4]. The process is 
pretty much like wrapping any other ser-
vice: You set up Stunnel on the server to 
accept connections, and on the client, 
you connect to the server and configure 
a local port that is forwarded to the 
server. Rsyslog on the client machine 
connects to the local port that sends the 
data off to the server.

In Conclusion
The rsyslog package is a lot more reliable 
and secure than syslog or sysklogd. Ad-
ditionally, you can log to a database, 
send SNMP alerts, and browse events 
with a nice web interface [5] [6].  n

[1]  Rsyslog: http://  www.  rsyslog.  com/

[2]  encrypting Syslog Traffic with TLS 
(SSL): http://  www.  rsyslog.  com/ 
 doc‑rsyslog_tls.  html

[3]  Delivery during off-peak hours: 
http://  wiki.  rsyslog.  com/  index.  php/ 
 OffPeakHours

[4]  Wrapping rsyslog with Stunnel: 
http://  kbase.  redhat.  com/  faq/  docs/ 
 DOC‑18564

[5]  “The sys admin’s daily grind: RSys-
log” by Charly Kühnast,  
Linux Magazine June 2008, pg. 63,  
http://  www.  linux‑magazine.  com/ 
 Issues/  2008/  91/  WHERE‑TO‑NEXT

[6]  “The sys admin’s daily grind: ph-
pLogCon” by Charly Kühnast, Linux 
Magazine, July 2008, pg. 69, http:// 
 www.  linux‑magazine.  com/  Issues/ 
 2008/  92/  MILKING‑MACHINE‑2.  0

INFO

01  # reliably transmit messages

02  # during off‑peak hours (10p to 4a)

03  $ModLoad omrelp

04  $WorkDirectory /rsyslog/work # 

where to place the spool files?

05  $ActionQueueType LinkedList

06  $ActionQueueDequeueTimeBegin 22

07  $ActionQueueDequeueTimeEnd 4

08  $ActionQueueFileName relpact

09  $ActionQueueSaveOnShutdown on

10  *.* :omrelp:10.1.2.3:2514

Listing 1: Off-Peak  
Message Delivery

SYSADMINSecurity Lessons: rsyslog

55iSSue 115June 2010

Kurt Seifried is an 
Information Secu-
rity Consultant spe-
cializing in Linux 
and networks since 
1996. He often won-
ders how it is that technology works 
on a large scale but often fails on a 
small scale.

T
H

E
 A

U
T

H
O

R


