
Whether I happen to be in an In-
ternet café, using the wireless
LAN at a hotel, or using a

public hotspot at an airport, I continu-
ally find myself locked up behind a fire-
wall that refuses connections to target
port 22. Of course, any firewall will gen-
erously let traffic to ports 80 and 443
pass.

In other words, it’s a good idea to bind
the SSH daemon to the HTTPS port on
my servers. This saves me digging a tun-
nel, and I can simply log in to my server
with ssh ‑p 443 <user>@<host>. But
if the HTTPS port is already occupied by
an SSL-capable web server, I have to put
my thinking cap back on. Enter sslh [1].

The makers of this tool call it an SSL/​
SSH multiplexer. The underlying idea is
that the multiplexer listens on port 443
and discovers for incoming connections
whether the client wants to speak
HTTPS with SSH to the host. The ser-
vices themselves are bound to local-
host:443 and localhost:22, respectively
(Figure 1). Sslh retrieves this informa-
tion from the /etc/defaults/sslh file,
which looks like the following in a sim-
ple setup:

RUN=yes

DAEMON_OPTS="‑u sslh U

 ‑p 10.50.5.42:443 U

 ‑s 127.0.0.1:22 U

 ‑l 127.0.0.1:443 U

 ‑P /var/run/sslh.pid"

To find out which protocol is currently
required, sshl analyzes the client’s be-
havior. In the case of an incoming
HTTPS connection, the client waits for
the server to signal that it is ready to re-
ceive. A client requesting an SSH con-

nection will not wait but will open the
dialog itself, and sslh will just wait for a
short time, typically two seconds. If the
client does not send any data in this
time, sslh assumes that it is an HTTPS
connection and forwards it to the web
server at 127.0.0.1:443.

Apache’s Domain
To restrict the Apache server to local-
host, I have to change the list parameter
in its configuration that sets SSL to 443
by default to 127.0.0.1:443. Strictly
speaking, you do not necessarily have to
bind the SSH port to localhost because
there is no conflict with another daemon
on port 22. However, I did this for two
reasons: First, it protects me and my
auth.log from a whole bunch of scans
that keep on turning up at that address.
Second, I can reach the server via a se-
rial console if SSH or sslh should fail for
some reason. n

Some of Charly’s servers run the SSH daemon on port 443 rather than on the standard port 22. If an

SSL-capable Apache web server starts causing trouble, his method of settling the dispute is sslh.

By Charly Kühnast

Security Lessons 56
Audit and secure your software with the
open source Valgrind tool.

GRUB 2. 58
A new look and several new features for
the ubiquitous GRUB bootloader.

SYSADMIN

The sys admin’s daily grind: sslh

The Daemon’s
in the Details

Figure 1: Instead of Apache and SSH fighting over port 443, the sslh daemon upstream iden-

tifies the request type – SSH in this case – and passes it on to the daemon responsible for it.

[1]	� sslh: http://​www.​rutschle.​net/​tech/​
sslh

INFO

Charly Kühnast is a
Unix operating sys-
tem administrator
at the Data Center
in Moers, Germany.
His tasks include
firewall and DMZ
security and availability. He divides
his leisure time into hot, wet, and
eastern sectors, where he enjoys
cooking, fresh water aquariums, and
learning Japanese, respectively.

T
H

E
 A

U
T

H
O

R

SYSADMINCharly's Column

55ISSUE 111February 2010

