
One of the consistent themes in
Peter Seibel’s book Coders at
Work [1] is: How do you get to

be a better programmer? This idea inter-
ests me greatly because, in the security
world, I see people consistently making
the same types of mistakes over and
over again.

After a while, you would think that
people would learn how to create a tem-
porary file securely. Or perhaps they
could at least learn to create, access, and
delete buffers in memory safely; how-
ever, this is obviously not the case for
many programmers (including some
very good ones). So, the obvious answer
is to look to the people who are writing
secure code and emulate and learn from
them. But how do you do this, espe-

cially if you have very little time and vir-
tually no budget?

Many programmers like to share, and
the beauty of knowledge and informa-
tion is that I can teach you what I know
and I get to keep it as well. Luckily,
some programmers have taken the time
to package their knowledge and wisdom
into software packages; indeed, the
number of libraries available to program-
mers now is staggering (most of us will
never have to write an HTTP client or
HTML parser thanks to these people).
So, what software can you use to write
better and more secure software?

Valgrind
Valgrind [2] is probably the most mature
open source (GPL-licensed) set of tools

for source code and binary

analysis, not just for security issues but
for performance issues (the two often go
hand in hand). Probably the component
that has the most effect on finding and
addressing security issues is memcheck.

The memcheck module will find
memory that is accessed when it
should not be, uninitialized values
that are used in dangerous ways,
memory leaks (always a potential
denial-of-service problem), and

bad freeing of heap blocks (double frees,
mismatched frees), and it can detect
when your program passes overlapping
source and destination memory blocks.

Installing and Using
Valgrind
Installing Valgrind is trivial on RPM- and
dpkg-based systems:

yum install valgrind

or

apt‑get install valgrind

Compiling Valgrind from source code is
also easy:

cd valgrind

./autogen.sh

./configure ‑‑prefix=/path

make

make install

Using Valgrind
Here is where things get a little tricky.
Valgrind creates a lot of output. Some of
it is false positives (or stuff that isn’t too
dangerous), and separating the chaff
from the wheat can take some work.
This leads directly to Debian Bug Report
Log 363516 [3] and my article on the se-

curity flaw that was created by this
source code change [4]. In a nut-

shell, Valgrind was warning
about the use of unini-
tialized memory, and
instead of using a sup-

pression file (to make
Valgrind stop complain-

ing) or simply sitting down
and getting a really good un-

derstanding of the code, the
developer chose to simply com-

ment out the offending lines. Un-
fortunately, this resulted in a predict-

Our security guy looks at software tools that you can use to audit and

secure your software. By Kurt Seifried

Overflows, underflows, and other security flaws

Secure
Programming

Security Lessons: Secure ProgrammingSYSADMIN

56 iSSue 111 February 2010

able pool of entropy that ultimately re-
sulted in keys generated by OpenSSL on
Debian that were entirely predictable
and easy to guess because so few possi-
bilities existed. As is the case with many
powerful tools, if they are used without
full understanding, the consequences
can be severe. An excellent pair of vid-
eos from SecurityTube [5] covers some
of the basics of using Valgrind on Linux.

If you’re like me and you have to pro-
gram, but don’t really trust yourself to
program safely, or you don’t have the ex-
pertise to use programs like Valgrind to
truly ensure that your programs are safe,
what can you do?

Use a Safer Language
A relatively simple solution addresses
most of the issues around memory man-
agement, such as allocating memory
properly (using uninitialized memory,
etc.), using memory safely (buffer over-
flows, underflows, etc.), and ensuring
that memory is destroyed correctly (dou-
ble frees, memory leaks, etc.): Use a pro-
gramming language that has built-in
memory management (e.g., Python,
Java, Perl, etc.). By doing so, you largely
avoid problems like having to care or
know about the length of a string or an
array when you create it. Simply create
the string or the array and shove data
into it. The buffer is expanded as
needed, and when you read from it, you
can’t go beyond the end of the string be-
cause the program interpreter will sim-
ply return an error saying there is no
more data or items for you to read (as
opposed to cheerfully reading from ran-
dom areas of memory). The downside of
course is that some problems and pro-
grams don’t lend themselves well to
these languages (almost all implementa-
tions of these languages are in C, which
is a memory management nightmare).

Source Code Auditing
Tools: PyChecker
Additionally, being a belt and suspend-
ers Unix kind of guy, I use a simple but
effective Python source code checker
called PyChecker.

PyChecker [6] is a Python source code
auditing tool. Although the Python inter-
preter will catch many programming er-
rors (and raise an exception, print out an
error, then exit), it won’t catch every-
thing. The use of a global variable

within a class, as opposed to a self vari-
able (which exists only within that in-
stance of the class and is thus much
safer in a threaded environment), can
raise all kinds of problems and race con-
ditions that are not much fun to track
down. However, PyChecker will catch
these and let you know about them im-
mediately. Installing PyChecker is easy:

easy_install PyChecker

If this doesn’t work (I got an error), you
can manually install it by downloading
the PyChecker tarball, unpacking it, and
running the install manually:

wget http://download.site/U

 pychecker‑0.8.18.tar.gz

tar ‑xf pychecker‑0.8.18.tar.gz

cd pychecker‑0.8.18

python setup.py install

Learning to Program
Securely
Even with all this, I haven’t yet ad-
dressed the education angle. If you want
to program securely, you’ll need to un-
derstand, or at least know about, the
various types of flaws that make soft-
ware insecure. These range from the
simple, such as the various kinds of buf-
fer overflows, to the esoteric “Use of a
Non-reentrant Function in an Unsyn-
chronized Context.” The Common
Weakness Enumeration (CWE) [7] proj-
ect is designed to do exactly this; that is,
come up with a complete taxonomy of
software security flaws with descrip-
tions, information about solutions, and
examples of the flaw. Some of the CWE
entries have code examples, and unfor-
tunately, most entries lack solid informa-
tion on how to actually address the
problem or avoid it. But as G.I. Joe says,
“Now you know, and knowing is half the
battle.”

The next step of course is learning the
mechanics and mindset of secure pro-
gramming. Although literally dozens of
books are available now, some of which
are actually quite good, I still prefer the
online resources. One of the best and
most comprehensive documents is David
A. Wheeler’s Secure Programming for
Linux and Unix HOWTO [8].

Another project that is attempting to
improve software security is the Open

Web Application Security Project
(OWASP) [9]. Although aimed at web
applications, most of the content in the
Development Guide, the Code Review
Guide, and the Testing Guide apply to
software that is not web based. Most im-
portantly, they include actual tools and
specific documentation on how to pro-
gram securely, in addition to “Web-
Goat,” a deliberately insecure applica-
tion that allows you to learn from the
mistakes of others.

Conclusion
Secure programming isn’t very hard.
Mostly, it requires discipline. This means
no cutting corners, taking the time to un-
derstand what your code changes will do
(especially if you didn’t write the code
originally), and most importantly, know-
ing how your code interacts with other
code and systems. n

[1] Seibel, Peter. Coders at Work.
apress, 2009, http:// www.
 codersatwork. com/

[2] Valgrind: http:// valgrind. org/

[3] Debian bug report logs – #363516:
http:// bugs. debian. org/ cgi‑bin/
 bugreport. cgi? bug=363516

[4] “Crash Investigation” by Kurt Sei-
fried, Linux Magazine, august 2008,
pg. 70

[5] SecurityTube:
http:// www.securitytube.net/
 Profiling‑Programs‑for‑Security‑
 Holes‑with‑Valgrind‑video. aspx

[6] PyChecker: http:// pychecker.
 sourceforge. net/

[7] Common Weakness enumeration:
http:// cwe. mitre. org/ data/ slices/ 2000.
 html

[8] Secure Programming for Linux and
Unix HOWTO: http:// www. dwheeler.
 com/ secure‑programs/
 Secure‑Programs‑HOWTO. html

[9] OWaSP: http:// www. owasp. org/

INFO

SYSADMINSecurity Lessons: Secure Programming

57iSSue 111February 2010

Kurt Seifried is an
Information Secu-
rity Consultant spe-
cializing in Linux
and networks since
1996. He often won-
ders how it is that technology works
on a large scale but often fails on a
small scale.

T
H

E
 A

U
T

H
O

R

