
Because the Linux kernel and all 

its attendant utilities are open 

source, you can combine the 

software any way you’d like. Indeed, 

many Linux distributions, Live CDs, and 

virtual appliances are available, each 

with its own bent or specialty.

Ideally, building a custom Linux distri-

bution would be as simple as burning a 

CD. In practice, though, the process is 

more complex, typically requiring the 

expertise of a developer or system ad-

ministrator.

Slax is a notable exception. Akin to 

shopping online, you can assemble and 

generate a custom Linux distribution 

with a few clicks of your 

mouse. Slax is so incredibly 

friendly and easy to main-

tain, you won’t believe it.

First, let’s look at Slax 

and its package manager, 

then let’s handcraft a Linux 

distribution. The test ma-

chine is a virtual computer 

running in Parallels Desktop 

on Mac OS X. Nonetheless, 

you can achieve the same 

results with physical media 

and hardware.

Introducing Slax
The standard Slax distribu-

tion comprises a core and a 

homepage. Now click on modules then 

develop in the next page, then switch to 

Konsole and type python --version.

Because Python is not part of the Slax 

core, you get an error message. To fix 

that problem, go to your browser again, 

navigate the list of developer modules 

until you find Python, and click activate. 

A series of message balloons should pop 

up at the top left. After the balloons indi-

cate success, return to the terminal win-

dow and retype python --version. This 

time the Python version number should 

be output to your screen.

Disabling a module is just as easy. To 

remove Python, click on the K Menu and 

choose System | Slax Module Manager. 

From there, select the Python module 

and click Remove Selected Module. If you 

try the python command as before to 

confirm the uninstall, the response is No 

such file or directory.

Interestingly, activating a module does 

not physically copy software to the local 

hard drive. Instead, it uses two file sys-

tems – httpfs and AUFS – to make it ap-

pear as if the module’s files are local.

Httpfs mounts a remote ISO image on 

the local system, making its contents 

available immediately. Meanwhile, AUFS 

(short for Another Union FileSystem) 

unions one or more directories into a 

single, virtual directory. AUFS treats 

each directory as an overlay.

For instance, if directory /usr/bin con-

tains bash (the Bash Shell), directory      

/tmp/a contains usr/bin/zsh (the Z 

Shell), and directory /tmp/b contains 

usr/bin/fish (the Fish shell), the union of 

these three directories makes all three 

shells available from /usr/bin. Thus, ac-

tivation mounts a remote ISO image to a 

local directory and unions the contents 

of the remote directory with the contents 

of a local directory to make megabytes of 

software available in an instant.

To see the list of activated modules, 

turn again to the Slax Module Manager, 

which you can also use to browse the 

local filesystem and activate local mod-

ules. With web activation, whenever you 

shut down Slax, all activated modules 

large collection of modules that can be 

added to the core. In this respect, 

Slax is similar to other Linux 

kits. For instance, Ubuntu 

Linux contains everything you 

need to get started, but it can 

be customized extensively with 

the Aptitude package man-

ager. However, the simi-

larities between Slax and 

other Linux distros end there because 

adding a Slax mod-

ule is as simple as 

clicking an icon on 

a web page.

Figure 1 cap-

tures a portion of 

the Slax games 

catalog. Each of the four modules 

shown has an icon, a name and version 

number, a description, and three but-

tons: download, add to build, and acti-

vate. Clicking on activate enables a 

module in an instant.

To try Slax, go to the Slax homepage 

[1], download the ISO image, then burn 

a CD or load the ISO onto a virtual ma-

chine and boot. In a moment, you will 

see the Slax desktop.

To launch a terminal window, click on 

Konsole (the screen icon) in the status 

bar at the bottom. Next, click on the K 

Menu at the bottom left, launch the Kon-

queror browser, and point it at the Slax 

With its novel package manager, Slax makes it 

simple to install new software and easy to build 

your own distributions. BY MARTIN STREICHER

Roll your own Linux with Slax

NO SLACKER
Ralf KRaft, 123RF

Figure 1: A few of the games available in Slax modules.

Desktop Tools: SlaxLINUXUSER

82 ISSUE 106 SEPTEMBER 2009



are deactivated and must be re-activated 

via the Internet at the next boot. Luckily, 

you can store a module locally and re-ac-

tivate it every time or just some of the 

time, as you’ll see next.

Installing a Module
In addition to the web browser interface, 

Slax provides alternative techniques to 

activate a module. For example, recall 

that each module in the Slax catalog has 

a download button. Clicking this button 

downloads the module to the local file-

system (a destination you choose) and 

leaves it in its bundled form. Once a 

module is local, you can activate/deacti-

vate manually, activate at every boot, or 

activate only when you need it.

To activate a local module manually, 

simply double-click its file from Kon-

queror or use the activate command.

For example, if you download the 

game Pix Frogger to ~/pixfrogger.lzm, 

you can activate the module with a dou-

ble-click via Konqueror or with the acti-

vate command:

# activate ~/pixfrogger.lzm

module file is stored inside the U

  union, moving to U

  /mnt/live/memory/modules first...

Now you can run pixfrogger, which 

you’ll find (virtually) in /usr/bin.

To deactivate the module, double-click 

the file /mnt/live/memory/modules/pix-

frogger.lzm, use the Module Manager, or 

use deactivate:

# deactivate /mnt/live/memory/U

  modules/pixfrogger.lzm

Only the superuser, root, can activate 

and deactivate modules.

If you run Slax from writable media 

and want to activate a module at every 

boot, copy the module to directory /slax/

modules. Then, to keep pixfrogger avail-

able at all times, run:

# cp /mnt/live/memory/modules/U

  pixfrogger.lzm /slax/modules

However, if want to activate a module 

selectively at boot time, copy it to /slax/

optional and name the module in the 

boot command. For instance, if pixfrog-

ger.lzm is in /slax/optional/pixfrogger.

lzm, the command boot slax 

load=pixfrogger will acti-

vate Pix Frogger during 

boot.

Optionally, you can 

name entire subdirecto-

ries in the boot com-

mand. Assuming all of 

your games are in /slax/

optional/games, the com-

mand boot slax load= 

games would activate 

every module in the 

games subdirectory. A re-

quest for a nonexistent 

module or directory is si-

lently ignored.

If you download a 

module and activate it, it is copied auto-

matically to /mnt/live/memory/modules 

– a virtual path for /slax/modules – and 

activated after reboot.

Building a Distribution
To build your own Slax-based distribu-

tion, you combine the core with all of 

the modules you want, then let Build 

Slax aggregate them and package it all 

into a single downloadable ISO.

To start, go to the Slax homepage and 

click build slax. By default, Build Slax 

starts each distribution with six mod-

ules, as shown in Figure 2. The first 

module, Core, is mandatory; the others – 

Xorg, KDE, Apps, KOffice, and Devel – 

can be removed at your discretion by 

mousing over each icon and clicking the 

red X that appears.

To add more modules, click on the 

Add more modules link and browse the 

catalog of all available modules. To add 

a module, click Add to build. To remove 

a module, click Undo build.

When finished, or to see your prog-

ress, simply return to the Build Slax 

page. Now the Python module appears 

under verified modules. The estimated 

size has increased from 190 to 195MB. 

Again, you can mouse over a module 

and click the red X to delete it.

When you are finished choosing mod-

ules, simply click the Download ISO but-

ton at the bottom of the window and 

save the file. Then, either burn a CD or 

load the ISO into a virtual machine and 

boot the image. When the desktop ap-

pears, run the python --version command 

to see that it is indeed present. Now you 

can disseminate your handiwork to Py-

thon coders everywhere.

Build Slax can save and restore your 

module selections, too. These features 

are useful if you want to bootstrap a new 

distribution from an existing one. Just 

above the list of modules are two links: 

one to save your selection, which keeps 

the file on your local hard drive, and one 

to restore it later, which produces a list 

in simple text that it uploads and inter-

prets.

Slax Not Slacking
Slax is the brainchild of Tomas Matejicek 

and is based on Slackware Linux. The 

current version of Slax is 6.1.1 (as of 

July 1, 2009), and maintenance releases 

are offered frequently to squash bugs 

and add features. Slax is available in 28 

languages.

Slax can boot off a USB thumb drive 

(USB 2.0 provides superior performance) 

and can be installed on a hard drive. 

And because Slax is generally very 

small, it’s usually easy to carve out a 

small partition on an existing Windows 

system, for example, and copy Slax man-

ually to the new partition (a “frugal in-

stall”). Instructions for this dual-boot 

configuration can be found in the Slax 

forums.

The initial install of Slax provides a ca-

pable suite of desktop applications, in-

cluding Kopete for instant messaging, 

K3b for burning media, JuK for music, 

and KPlayer for playing other media.

Of course, if you need different or ad-

ditional software, you now know how to 

build your very own flavor of Linux.  n

[1]  Slax: http://  www.  slax.  org

INFO

Figure 2: Of the six default modules, only Core is mandatory.

LINUXUSERDesktop Tools: Slax

83ISSUE 106SEPTEMBER 2009


