
inux is a free operating system.

Java is one of the most popular

platforms for free software. Run-

ning free Java software on Linux should

be easy; yet, until fairly recently, anyone

who wanted to run Java on Linux faced

a dilemma. On one hand, you could use

Sun’s own Java environment, and you’d

be guaranteed compatibility (at least

with other Sun-based deployments), but

you would be using non-free software.

On the other hand, you could go with

any of literally dozens of free offerings,

ranging from someone’s PhD thesis to

major projects with release schedules

and full-time staff, but these alternatives

would lead to questions of compatibility

under Sun’s Technology Compatibility

Kit (TCK) test suite.

This situation improved considerably

in late 2006 and early 2007 when Sun

began releasing its Java Development Kit

(JDK) under a free license. Because Sun

relied on other vendors for some parts of

the JDK, it couldn’t release them as free

software. The IcedTea project [1] has

filled in these missing pieces, both for

JDK 5 and JDK 6, by bringing in appro-

priate parts of the GNU Classpath [2]

(Figure 1). Because Sun has also re-

leased its HotSpot JVM [3] under an

open source license, it is now possible to

run Java on a completely free, TCK-com-

pliant system.

Because the open source community

still supports several other completely

free choices that aren’t officially blessed,

the situation is still a bit complex. To run

Java, you need some way of executing

Java bytecodes, typically but not neces-

sarily, with a Java Virtual Machine

(JVM), and you need an implementation

of whatever libraries you are using (to-

gether, this is more or less what Sun

calls a Java Runtime Environment

[JRE]). In this article, I will walk you

through the major choices for JREs.

The JVM is the component that actually

runs your Java application. Because Java

programs are represented as a sequence

of bytecodes, the simple way to run a

Java application is to interpret each byte-

code and do what it says. This simple

method is much too slow to be practical,

so modern JVMs typically include a Just

In Time (JIT) compiler that translates

Java bytecodes to native machine code.

When Java was introduced, the idea

of a new object-oriented language with

a published specification and a major

vendor behind it was catnip to program-

ming language researchers, resulting in

a burst of JVM development. Literally

dozens of projects sprang up. Most of

these projects had petered out by 2003

or so, but a few stuck around and

gained wider acceptance.

Sun’s HotSpot JVM comes in client

and server versions. Both versions are

free. The client version is tuned for

shorter running applications, whereas

the server version is tuned for long-run-

ning servers. The main difference is that

the server version puts more effort into

optimizations that have a greater effect

with longer execution times. An applica-

tion running on the client JVM will typi-

cally start faster but might run slower

over time. HotSpot is the JVM shipped

with OpenJDK [4] (Figure 2). At this

writing, the latest point release is dated

February 11, 2009.

JamVM [5], an alternative virtual ma-

chine developed by Robert Lougher and

first released in 2003, is optimized for

small size and fast startup time. The exe-

We introduce some tools and projects of the

Java landscape. BY DAVID HULL

The components discussed in this article

are under active development. State-

ments about which versions are avail-

able, or packaged, or compatible with

various other components reflect my

best understanding as of this writing.

Work in Progress

Java on Linux

32 ISSUE 102 MAY 2009

cutable for the i486 and later Intel chips

is around 180KB. JamVM is developed

mainly on PowerPC, but it has been built

and tested on ix86, ARM, AMD64, and

MIPS chips. JamVM requires GNU Class-

path for library support; according to the

JamVM website, it is incompatible with

OpenJDK. The latest release is 1.5.2,

dated February 4, 2009.

Cacao [6] was originally developed in

1997 at the Vienna Institute of Technol-

ogy as a faster alternative to Sun’s JVM,

which was a pure interpreter. Cacao in-

stead compiles everything as it runs it.

In this, it is more like the server version

of HotSpot than the client. Cacao be-

came an open source project in 2004.

The latest release is 0.99.3, dated August

12, 2008.

Jikes RVM [7] (not to be confused

with the RVM “recoverable memory” li-

brary) is the JVM produced as part of

IBM’s Jalapeño project. The Jikes VM is

“meta-circular,” meaning it is written in

Java. The R in the name is for research,

and RVM is aimed at demonstrating and

trying out new and wonderful ideas in

virtual machine technology. The project

is very much alive – with a book just re-

leased about its architecture – but unlike

the Jikes compiler, it does not appear to

be actively packaged for distribution.

Kaffe [8] was originally developed in

1996 and was, for a time, the flagship

product of Transvirtual Technologies.

Transvirtual released Kaffe under the

GPL in 1998, and it continues as an open

source project. The Kaffe project is aimed

at portability and small size. Kaffe has

been ported to a large variety of plat-

forms, ranging from small embedded de-

vices to Linux, Mac, and Windows. The

developers do not claim full Sun compat-

ibility. In fact, the website goes so far as

to explicitly disclaim Sun support. In par-

ticular, Kaffe does not support security

features such as bytecode verification.

The SableVM project [9] aims to pro-

vide a highly portable and understand-

able JVM implementation. SableVM uses

a sophisticated interpreter to achieve

performance “near” that of a JIT. Ac-

cording to the website, the Sable project

“has met its research goals and is not ac-

tively maintained anymore”; indeed, the

last release was 1.13, dated December

2005. Nonetheless, SableVM is available

in package form for major distributions.

Another option is to compile with the

GNU Compiler for Java (GCJ) [10]. Did I

say the JVM is what actually runs Java

programs? Usually it is, but you don’t

have to take the usual route of compiling

Java to bytecodes and then feeding them

to a JVM that will most likely compile

them even more. Instead, you can feed

the bytecodes to the GCJ and produce

native code directly. Also, you can use

the GCJ to compile Java Archive (JAR)

files to native code. The finished product

will run like any other native executable,

and a libgcj shared library even provides

the standard library environment. This

process is what used to be called “compi-

lation,” but in the context of a bytecode-

based system like Java or .NET, it is

called “Ahead Of Time” (AOT) compila-

tion to distinguish it from “just in time.”

Many of the earlier open source JVM

projects are still around, and some of

them might even work with modern

Java systems. To use them, you’ll have

to build the code yourself and, quite pos-

sibly, get your hands dirty in the code.

In addition, you will find a number of

more specialized JVMs aimed at embed-

ded applications or other niches. They

aren’t included here, but if you’re curi-

ous, the Kaffe site has an extensive list

[11]. A virtual machine called IKVM [12]

is even available for running Java on

.NET, and it works with Linux. Tools like

IKVM might be useful if you’re develop-

ing for .NET, but for running ordinary

Java applications on Linux, it’s probably

better just to run them in a standard en-

vironment.

Mercifully, the task of choosing libraries

is much simpler than choosing JVMs be-

cause the open source user has fewer

options. After all, writing a complete set

of libraries is a much bigger task than

writing a JVM. For example, the GNU

Classpath project has 20 active develop-

ers, whereas a VM tool like JamVM has

just one. And let’s face it: Writing a new

JVM with a cutting-edge optimizing JIT

is a lot more fun than writing 18 differ-

ent versions of Arrays.fill().

Most Java libraries can be written in

Java and will run on any compliant JVM,

leaving only a small set of packages that

must be customized for the JVM imple-

mentation. In practice, all of the JVMs I

listed, except HotSpot, integrate with

GNU Classpath. Several also integrate

with OpenJDK. Even OpenJDK itself

used GNU Classpath code to replace the

proprietary sections that Sun couldn’t

open source.

Although Sun has opened its library

code, it still tightly controls the process

and compatibility tests (in particular, its

TCK) that allow an implementation to

claim full Java compliance. Because of

this, it is generally not practical for open

source projects to claim full Java compli-

ance, with the special exception of Open-

JDK. Naturally, an open source project,

Mauve [13], was started that is aimed at

addressing this by providing a free test

suite for Java class libraries.

GNU Classpath was practically the

Java on Linux

33ISSUE 102MAY 2009

only game in town for a long time if you

wanted to run Java in a completely free

environment. Classpath began as the li-

brary for the Japhar virtual machine, but

as the various JVM projects figured out

that writing an independent standard li-

brary cuts into actual JVM development,

the various efforts began to merge. As a

result, GNU Classpath has been inte-

grated with all of the free JVMs de-

scribed in this article except for HotSpot,

which uses OpenJDK.

Although GNU Classpath can’t use

Sun’s TCK, it can be tested with Mauve.

Unfortunately, because both Mauve and

GNU Classpath are moving targets, I

can’t say whether Classpath is even

Mauve compliant, although it seems safe

to assume GNU Classpath is substan-

tially Mauve compliant at any given mo-

ment. Mauve is becoming a better and

better proxy for TCK over time, so

there’s a good chance that GNU Class-

path will “just work” for your purposes.

But if you really care, you’ll have to

check for yourself.

OpenJDK, or something substantially

derived from OpenJDK, is the only

choice if you want full Java TCK compli-

ance in a completely free environment.

OpenJDK is compatible with Sun’s JDK

5, and OpenJDK 6 (not too surprisingly)

is compatible with JDK 6. When cou-

pled with HotSpot, OpenJDK provides

the official, Sun-blessed open source

Java environment.

Apache Harmony [14] is an Apache

top-level project (as of 2006) aimed at

providing an independent, free Java envi-

ronment compatible with Apache license

2.0. The requirement of Apache compli-

ance precludes GNU Classpath, which

carries the GPL “linking exception.” Ex-

actly why and when this might matter is

a bit subtle, but in some cases of interest

to Apache, it does make a difference.

OpenJDK/ OpenJDK 6 is free, but it

 depends on Sun, both because its main

code base comes from Sun and because

Sun’s license requires any modified ver-

sion to be “substantially derived” from it

in order to be able to use the TCK to en-

sure compatibility. For example, if you

wanted to use OpenJDK as a base, but

replace half of the packages, you prob-

ably couldn't claim TCK compatibility.

Finally, Sun had not yet open sourced

its environment when Harmony was ini-

tiated. Harmony is not a complete re-

write of all the Java libraries, in that

many of the standard Java components

(e.g., Apache’s own XML libraries) are

already Apache-compatible open source

implementations. The Harmony team

seeks to integrate existing packages

when possible and write from scratch

when necessary.

Harmony is currently still under devel-

opment with no official stable release in

sight, although the site assures you the

team is “making steady progress.” The

latest stable build is 5.08M, dated No-

vember 13, 2008. To date, Harmony has

been integrated with SableVM, Jikes

RVM, Harmony’s own VM interpreter,

and other VM implementations. It is a

bit unclear whether Harmony will end

up TCK compliant. The Harmony FAQ

states that it will, but Sun has not yet

 officially allowed access.

Debian has stable

packages for GNU

Classpath, OpenJDK,

and OpenJDK 6.

OpenJDK 6 with

HotSpot is the default

Java package for

Ubuntu. Kaffe, Cacao,

and SableVM are also

available. Kaffe re-

quires GNU Classpath.

The others can use ei-

ther GNU or OpenJDK

6. Red Hat RPMs are

available for GNU

Classpath, OpenJDK/

OpenJDK 6 with HotSpot, Kaffe, and

Cacao. Fedora 9 ships with OpenJDK 6,

and other distributions should be follow-

ing suit if they haven’t already.

The good news is that there is now an

easy option for free Java on Linux: Use

OpenJDK with HotSpot. This option is

free as in speech and free as in beer, and

it is certified compatible with Sun’s

usual offering. (For most purposes, it is

Sun’s usual offering. If you have a recent

major distribution, chances are you’re

already running it.)

On the other hand, if you want to ex-

periment with different Java environ-

ments, that shouldn’t be too hard either.

Stable packages are available for several

of the JVMs described in this article.

If you want to experiment with a

lesser-known JVM, particularly if it is

one of the versions dating to the early

2000s or late 1990s and it was not de-

scribed in this article, you probably need

to roll up your sleeves. Most likely, you

won’t have OpenJDK available, and you

might not have GNU Classpath. If the

project doesn’t support Classpath or

OpenJDK, you might have to settle for a

less than complete set of libraries. The

good news is, you don’t have to play

around with these partial solutions un-

less you really want to – if you do, you

probably won’t mind wrangling a few

Makefiles. p

[1] IcedTea: http:// iced-tea. org/

[2] GNU Classpath: http:// www. gnu. org/

 software/ classpath/

[3] HotSpot JVM: http:// openjdk. java.

 net/ groups/ hotspot/

[4] OpenJDK: http:// openjdk. java. net/

[5] JamVM:

http:// jamvm. sourceforge. net/

[6] Cacao: http:// www. cacaovm. org/

[7] Jikes RVM: http:// jikesrvm. org/

[8] Kaffe: http:// www. kaffe. org/

[9] SableVM: http:// www. sablevm. org/

[10] GNU Compiler for Java:

http:// gcc. gnu. org/ java/

[11] JVM list: http:// www. kaffe. org/ links

[12] IKVM: http:// www. ikvm. net/

[13] Mauve:

http:// sources. redhat. com/ mauve/

[14] Apache Harmony:

http:// harmony. apache. org/

INFO

Java on Linux

34 ISSUE 102 MAY 2009

