
Working With the Kernel 21

Performance Tuning Toolbox 30

Multimedia and the Kernel 38

COVER STORY

he kernel is the brain at the cen-

ter of your Linux system. This

month we examine some tech-

niques for managing and customizing

the Linux kernel. We start with an in-

depth article by Knoppix creator (and

Linux Magazine columnist) Klaus Knop-

per on building, upgrading, and custom-

izing the kernel. Linux sound expert

Dave Phillips weighs in with a look at

how to tune the kernel for multimedia

apps, and the final article in the set ex-

If you get right down to it, the

Linux kernel is the real Linux. This

month we focus on tools for tun-

ing and tailoring the kernel.

BY ZACK BROWN

amines some popular Linux optimiza-

tion tools. If you are ready to step up

your kernel configuration game, read on

for some practical Linux kernel hacks.

But first, we asked Kernel News author

Zack Brown to provide a little back-

ground on how that code in the kernel

got to your hard drive.

The Linux kernel development process is

a fascinating system that is itself under-

going constant revision. Before Linux,

although free software licenses existed,

the projects that used them maintained a

very strict ivory-tower approach to de-

velopment, ignoring the contributions of

others on the grounds that only experts

in the field could understand the coding

problems well enough to produce a good

result. Linus Torvalds’ approach stood

this idea on its head by making the out-

landish assumption that meaningful con-

tributions could come from anyone, al-

most regardless of skill level. Because of

this approach, the old free software

projects like libc had to

adapt or risk being forked into compet-

ing projects that would do much better

with an increased developer base.

Ultimately, as the project leader, Linus

has the final word on kernel contribu-

tions and the development process itself.

But like all open source projects, he is

subject to the willingness of the other

developers to go along with his deci-

sions. Kernel development, like all free

software projects, can be contentious,

and large schisms can erupt between de-

Kernel Hacks Intro

19ISSUE 100MARCH 2009

019-020_coverintro.indd 19 15.01.2009 14:21:03 Uhr

velopers with different ideas about how

to do things. Some open source projects

can get so divisive that one developer

forks the entire code base and continues

development with whichever other con-

tributors care to follow.

How does kernel development take

place today? To begin with, the develop-

ment community supports several mail-

ing lists, the primary one being linux-

kernel, which you can read about at

http:// www. tux. org/ lkml. Every release

of the kernel also includes a MAINTAIN-

ERS file in the documentation directory,

which lists everyone officially responsi-

ble for a portion of the kernel, along

with the mailing lists relevant to that

portion. Each mailing list is (or should

be) a place you can post to without sub-

scribing. The people who reply will CC

you in their responses. This arrangement

is all part of the original idea of encour-

aging contributions from everyone. You

don’t have to be deeply involved in ker-

nel development or any particular area

of kernel development, in order to make

a contribution. All you need is the

source code and a desire to help.

The mailing lists are the primary

means of communication between ker-

nel developers. Programmers make pro-

posals, submit and discuss patches, de-

bate controversies, and announce new

releases of various projects, including

the kernel itself. But the MAINTAINERS

file is only the start of the process. The

developers maintain several kernel forks,

each designed with the ultimate goal of

feeding their differences back into the

primary kernel. With the recent arrival

of the of the Git code management sys-

tem (developed by Linus and a number

of other kernel developers), it is now

possible for groups of developers to de-

velop their own common fork, before

feeding the changes upstream to Linus.

Depending on the part of the kernel

you’re working on, and the maintainer

you contact, that maintainer will sign off

on your patch and submit it to one of the

public trees. Once there, the patch will

be tested by a wider audience. When

you first post your patch, the only peo-

ple who actually test it are the people

who actually take the trouble to apply

the patch by hand to one of their kernel

trees. Once in one of the public trees, the

patch will be at least marginally tested

by anyone who downloads and tries out

that tree. Some trees are more popular

than others. Andrew Morton’s -mm tree

is actually the kernel of choice for vari-

ous developers, who run it regularly on

their home systems.

Several years ago, the community de-

veloped the concept of kernel lieuten-

ants – an inner circle of experienced de-

velopers who Linus trusts to send only

good, solid patches. The idea of a lieu-

tenant is more of a useful idea than any

kind of formal arrangement. Some folks

who do consistently good work tend to

be able to get their submissions in faster,

and they tend to be the people Linus

would prefer the various maintainers

route certain patches through. These es-

sentially social relationships between

Linus and the lieutenants further reduce

the bottleneck of Linus having to review

every single patch. Although these lieu-

tenants are a legitimate part of kernel de-

velopment process, the few times any-

one has posted to the mailing list asking

for a list of Linus’ lieutenants, the re-

quest was not taken very seriously, be-

cause no such formal designation exists.

It’s just a small group of people who

seem to work well with the patches.

If your patch is more than just a fix – for

instance, if it is a new driver or some

other discrete part of the kernel, you

might also consider submitting a patch

to the MAINTAINERS file and adding

yourself as the

you suspect they have, and you want to

maintain the project in their place, the

best thing to do is to ask them, or ask on

the mailing list. Someone with authority

over that part of the kernel will probably

get right back to you. In some cases,

maintainership is handed over directly

via public announcement after the cur-

rent maintainer has completed a private

search for a replacement.

The maintainer’s obligation is fairly

fluid. A maintainer might do most of the

coding personally or simply act as a cus-

todian of the code, primarily accepting

patches by other people. About the only

requirement is that a maintainer should

always keep their entry in the MAIN-

TAINERS file up to date and respond to

emails, even if it’s to say that they don’t

do much work on the project anymore

and would like to find a replacement.

The kernel development process has its

own culture and its own sense of eti-

quette. It is a culture that favors encour-

aging others, as well as rewarding people

who contribute and accept feedback on

their contributions. As the process con-

tinues to evolve, one over-

arching theme is: How

can the project make

the best possible use

of everyone’s

 desire to help?

official main-

tainer. No one has

the official task of iden-

tifying maintainers and adding

them to the list; it is up to the contribu-

tors themselves to take responsibility for

their portion of the code. In some cases,

the question of maintainership is obvi-

ous. If you wrote the driver and plan to

maintainer it, go ahead and list yourself

as the maintainer. If someone has aban-

doned maintainership of something, or if

Kernel Hacks Intro

20 ISSUE 100 MARCH 2009

019-020_coverintro.indd 20 15.01.2009 14:21:09 Uhr

