
he arrival of consumer electronic

devices such as PDAs, cell

phones, and Internet tablets has

placed new emphasis on techniques for

connecting and sharing information [1].

The Universal Plug and Play (UPnP)

standard [2] is a good candidate to pro-

vide pervasive services for a new genera-

tion of electronic devices.

The original concept of Plug and Play

focused on dynamically attaching de-

vices directly to a computer. A device

driver controlled by the operating system

detected the peripheral and made it

available to the user via system calls.

The new Universal Plug and Play stan-

dard offers a radically different ap-

proach: Devices operate on a network

and are detected with the use of network

protocols. The system calls used in the

previous plug and play architecture are

replaced by remote method invocation

with the use of SOAP web services.

A UPnP network is a collection of in-

terconnected computers, network appli-

ances, and wireless devices that use

UPnP to discover, advertise, and access

network services. The goal is to provide

an easy-to-use framework for creating

tools to support the communication of

network-based devices. UPnP achieves

this goal by defining and publishing

UPnP device control protocols built on

open, Internet-based communication

standards [3]. As you might expect,

UPnP supports connections for devices

such as cell phones or MP3 players, but

UPnP also offers benefits for connecting

to conventional peripherals such as

printers, as well as wireless household

electronic gadgets for controlling appli-

ances, lights, doors, and curtains.

Universal Plug and Play provides an easy framework for seamless integration of network devices. Learn how

to build your own UPnP solution using the open source BRisa framework. BY LEANDRO MELO DE SALES

Universal Plug and Play

50 ISSUE 97 DECEMBER 2008

050-056-upnp.indd 50 16.10.2008 17:56:08 Uhr

An example of a UPnP standard is the

UPnP AV specification [4], released in

the middle of 2002 and updated in 2006.

UPnP AV supports UPnP-enabled devices

that share multimedia content and ser-

vices. The UPnP AV standard defines

protocols for discovering, sharing, and

playing multimedia content.

In this article, I will explain how to

create a simple multimedia application

based on the UPnP architecture. To build

this simple solution, I will use the BRisa

framework [5], which is an open source

framework for developing custom UPnP

applications.

UPnP Audio and Video (AV) is a specifi-

cation within the UPnP standard super-

vised by the Digital Living Network Alli-

ance (DLNA) [6]. DLNA supports a vi-

sion of a wired and wireless interopera-

ble network of personal computers, con-

sumer electronics, and mobile devices

sharing multimedia content and services

in a seamless environment.

The UPnP AV specification defines a

system of three UPnP devices:

s฀ -EDIA฀SERVER฀n฀A฀COMPONENT฀THAT฀
shares multimedia items, such as

audio (.mp3, .wma,

.ogg), video

(.mpeg, .wmv, .fla),

image (.gif, .jpg,

.png), and remote mul-

timedia streaming, such

as Internet radio sta-

tions and online photo

albums.

s฀ -EDIA฀RENDERER฀n฀RE

sponsible for reproduc-

ing all multimedia data

shared by any UPnP

media server and pro-

viding mechanisms that

allow remote devices to

play, pause, stop, and

seek a multimedia item.

s฀ -ULTIMEDIA฀CONTROL฀
POINT฀n฀A฀SMALL฀DEVICE�฀
such as a cell phone or

Internet tablet, that

gives the user control

over media servers and renderers.

Figure 1 illustrates the UPnP device

discovery and service consumption pro-

cess. When the control point is started, it

sends a multicast message to the net-

work asking for media servers and

media renderers (Step 1). When the

UPnP devices receive the multicast mes-

sage sent by the UPnP control point,

each device responds to the control

point requester (Step 2).

At this point, the UPnP control point

knows about all of the connected UPnP

devices. The user, operating through the

interface provided on the control point,

browses and selects any multimedia

item listed by the UPnP media server

(Step 3). After selecting a multimedia

item, the user chooses a media renderer

that will process (play) the multimedia

item (Step 4). After selecting a media

server and a media renderer, the user

simply clicks on the Play button of the

UPnP control point, and the media ren-

derer starts to play the multimedia

stream sent by the media server.

BRisa is an open source framework writ-

ten in Python that supports the develop-

ment of UPnP devices and services.

The BRisa framework consists of the

following:

s฀ CORE฀50N0฀CLASSES฀THAT฀ALLOW฀THE฀
development of new devices and

services,

s฀ THE฀CONTROL฀POINT฀!0)�
s฀ THREE฀END
USER฀APPLICATIONS�฀THE฀"2ISA฀

configuration tool, the media server,

and the media renderer.

The BRisa media server and media ren-

derer are developed on top of the BRisa

UPnP framework, providing a reference

implementation for the UPnP media

server and media renderer specifications.

These sample UPnP devices demonstrate

Network

Browsing Control

Sending Media

Requesting Media

Control Point

1 2

3 4

5

6

Discovering Discovered

Devices

NOTIFY NOTIFY

BRisa Media Server BRisa Media Renderer

Before setting up BRisa, install the fol-

lowing Python packages:

http:// python. org/

http:// gstreamer.

 freedesktop. org/ download

http://

 gstreamer. freedesktop. org/ download

http:// gstreamer.

 freedesktop. org/ modules/ gst-python.

 html

http:// pyinotify.

 sourceforge. net/

http:// pypi. python.

 org/ pypi/ mutagen/ 1. 12

BRisa Dependencies

Any UPnP-compatible device from any

vendor can dynamically join a UPnP net-

work through the following process:

IP address

their services to control points on the

network

capabilities on request from control

points, learning about the presence

and capabilities of other devices

vices, and control points can send ac-

tions to these services

quested, the control points register to

remote devices' events

vide a presentation web page for a

control point, allowing a user to con-

trol the remote device and view the

device status

Regardless of the steps and states of a

UPnP device, the device can leave the

network automatically without leaving

any unwanted state information behind.

Joining Up

01 BRisa Media Server version 0.7

started. Please refer to /home/

leandro/.brisa/brisa.log for more

information.

02 Listen address:

http://192.168.1.55:16672

Listing 1: BRisa Media
Server Startup Message

Universal Plug and Play

51ISSUE 97DECEMBER 2008

050-056-upnp.indd 51 16.10.2008 17:56:11 Uhr

the power and flexibility of the BRisa

UPnP framework; you can modify and

extend these examples to offer new net-

work services based on other UPnP

specifications.

The UPnP Control Point API included

with the BRisa framework lets develop-

ers consume UPnP services for discover-

ing devices, browsing for multimedia

content, sending jobs to printers, turning

home lights on or off, retrieving temper-

ature information from temperature

monitors, and controlling the motion of

window curtains. As an example of what

you can do with the BRisa framework, I

01 import sys

02 from brisa.control_point.control_point_av import

ControlPointAV

03 from brisa.main import ThreadManager

04

05 class CommandLineControlPointAV(ControlPointAV):

06

07 def __init__(self):

08 ControlPointAV.__init__(self)

09 self.subscribe('new_device_event', self.on_new_

device)

10 self.subscribe('remove_device_event', self.on_

remove_device)

11 self.devices_found = []

12

13 def on_new_device(self, dev):

14 self.devices_found.append(dev)

15

16 def on_remove_device(self, udn):

17 for dev in self.devices:

18 if dev.udn == udn:

19 self.devices_found.remove(dev)

20 break

21

22 def cmd_list_devices(self):

23 n = 0

24 for dev in self.devices_found:

25 print 'device %d:' % n

26 print '\tudn:', dev.udn

27 print '\tfriendly_name:', dev.friendly_name

28 print '\tservices:', dev.services

29 print '\ttype:', dev.device_type

30 if dev.devices:

31 print '\tchild devices:'

32 for child_dev in dev.devices:

33 print '\t\tudn:', child_dev.udn

34 print '\t\tfriendly_name:', child_dev.

friendly_name

35 print '\t\tservices:', dev.services

36 print '\t\ttype:', child_dev.device_

type

37 print

38 n += 1

39

40 def cmd_set_server(self, id):

41 self.current_server = self.devices_found[id]

42

43 def cmd_set_render(self, id):

44 self.current_renderer = self.devices_found[id]

45

46 def cmd_browse(self, id):

47 result = self.browse(id, 'BrowseDirectChildren',

'*', 0, 10)['Result']

48 for d in result:

49 print "%s %s %s" % (d.id, d.title, d.upnp_

class)

50

51 def run(self):

52 exit = False

53 try:

54 while not exit:

55 c = str(raw_input('>>> '))

56

57 if c == 'start_search':

58 self.start_search(600,

"upnp:rootdevice")

59 print 'search started!'

60 elif c == 'stop_search':

61 self.stop_search()

62 print 'search stopped!'

63 elif c == 'list':

64 self.cmd_list_devices()

65 elif c.startswith('browse'):

66 self.cmd_browse(c.split(' ')[1])

67 elif c.startswith('set_server'):

68 self.cmd_set_server(int(c.split(' ')

[1]))

69 elif c.startswith('set_render'):

70 self.cmd_set_render(int(c.split(' ')

[1]))

71 elif c.startswith('play'):

72 self.play(c.split(' ')[1])

73 elif c == 'exit':

74 exit = True

75 elif c == 'help':

76 print 'commands: start_search, stop_

search, list, ' \

77 'browse, set_server, set_render,

play, exit, help'

78 c = ''

79 except KeyboardInterrupt, k:

80 print 'quiting'

81

82 ThreadManager().stop_all()

83

84 def main():

85 print "BRisa ControlPointAV example\n"

86 cmdline = CommandLineControlPointAV()

87 cmdline.run()

88 sys.exit(0)

89

90 if __name__ == "__main__":

91 main()

92

Listing 2: Command-Line Control Point

Universal Plug and Play

52 ISSUE 97 DECEMBER 2008

050-056-upnp.indd 52 16.10.2008 17:56:11 Uhr

will describe a BRisa UPnP AV scenario

that shows how to create a BRisa control

point. I will also demonstrate to custom-

ize the BRisa media server by creating a

media server plugin.

For more information on programming

with the BRisa UPnP framework, visit

the documentation section of the BRisa

project website [7].

Consult the BRisa end-user documenta-

tion [8] for details on how to install the

BRisa framework through your favorite

Linux distribution (such as Debian, Fe-

dora, Gentoo, or Ubuntu).

Regardless of which Linux package

manager you use, the BRisa project pro-

vides a portable mechanism for install-

ing the core infrastructure in any Py-

thon-enabled system. To set up the BRisa

framework, you’ll need to install a few

additional Python packages. See the box

titled “BRisa Dependencies.”

To install the BRisa UPnP framework on

your computer:

1. Download the latest BRisa framework

package [7].

2. Decompress the BRisa framework

package as root:

tar zxvf brisa-{version}.tar.gz

3. Go to the BRisa source code directory:

cd brisa-{version}

4. Run the BRisa installation:

python setup.py install

It is also a good idea to install the BRisa

configuration tool, which is available at

the BRisa website. The configuration

tool will save you from having to edit

configuration text files by hand.

After configuring the BRisa media

server, you can start it by simply execut-

ing the command brisa-media-server on

a terminal, regardless of the current di-

rectory you are in. Similarly, you can

start the BRisa media renderer with the

command brisa-media-renderer. The

configuration tool allows users to change

their media server default parameters

and the installed plugins. (Plugins pro-

vide additional functionality not found

in the default media server. For example,

the Filesystem plugin lets you set up file-

system directories in which the BRisa

media server will share your audio,

video, and image files.)

If the BRisa media server starts cor-

rectly, you’ll see the message shown in

Listing 1. If you don’t see this message,

check the brisa.log file to see if you can

detect the problem. If the problem per-

sists, contact the BRisa team [9] or try

the troubleshooting section of the BRisa

documentation [10].

After you have installed the BRisa UPnP

framework, you can use the framework

to develop a simple command-line UPnP

control point. The control point API lets

you create a control point class and in-

herit from either the brisa.control_point.

control_point.ControlPoint or the brisa.

control_point.control_point_av.Control-

PointAV class, depending on your pur-

pose. The control point example shown

in Listing 2 searches UPnP devices,

browses for multimedia items in a given

media server, and asks for a media ren-

derer to play an audio file shared by the

media server.

In line 5 of Listing 2, the class Com-

mandLineControlPointAV inherits from

the BRisa class brisa.control_point.con-

trol_point_av.ControlPointAV. All avail-

able multimedia methods specified by

the UPnP AV specification and provided

by the class brisa.control_point.control_

point_av.ControlPointAV are thus also

used by the CommandLineControlPoin-

tAV class. This example creates the run()

class method that reads continuously

from the command line using the Python

built-in raw_input() function (line 55).

01 # python control_point_av.py

02 BRisa ControlPoint example

03 >>> start_search

04 search started!

05

06 >>> list_devices

07 (A list of devices found is printed here. Look for the type

field for each device to determine what you will set as

08 media server and what you will set as media renderer.)

09

10

11 >>> set_server 0

12 >>> set_render 1

13

14 Browse the root folder of the media server

15 >>> browse 0

16 1 Music object.container

17 3 Pictures object.container

18 12 Playlists object.container

19 2 Video object.container

20 (Exploring the folder 2 - Video)

21

22 >>> browse 2

23 5 Video Broadcast object.container

24

25 (Exploring the folder 5 - Video Broadcast)

26 >>> browse 5

27 youtube:7 YouTube object.container

28

29 (Exploring the items of the YouTube plug-in folder)

30 >>> browse youtube:7

31 youtube:hDiLH7jmVsU Around the World object.item.

videoItem.videoBroadcast

32 youtube:B5X5cZ62FGg Californication object.item.

videoItem.videoBroadcast

33 youtube:DF45X3mJsW Easily object.item.videoItem.

videoBroadcast

34

35

36 (Play the video 'Around the World' in the media renderer)

37 >>> play youtube:hDiLH7jmVsU

38 >>> exit

Listing 3: Using the Command-Line Control Point

Universal Plug and Play

53ISSUE 97DECEMBER 2008

050-056-upnp.indd 53 16.10.2008 17:56:11 Uhr

Depending on the command line typed

by the user, the application takes a spe-

cific action (lines 57 to 76). The possible

actions are associated with the user

commands start_search, stop_search,

list_devices, set_server, set_render,

browse, play, exit, and help.

The start_search and stop_search user

commands just delegate a simple call to

the respective methods available in the

brisa.control_point.control_point_av.

ControlPointAV class. When the user

types the command list_devices in the

prompt, the method CommandLineCon-

trolPointAV.cmd_list_devices() (line 22)

is invoked. This method prints the list of

the UPnP devices discovered since the

first time the start_search command was

run by the user.

BRisa’s UPnP framework provides four

important bits of information about the

discovered devices: the device’s UDN,

which is an exclusive identifier for the

UPnP device in the network; the device

type, which tells whether the device is a

media server, a media renderer, or some

other UPnP device; a list of services pro-

vided by the device; and the Friendly

Name, a short, more convenient name

for the device.

The set_server and set_render com-

mands specify the media server and

media renderer, respectively. While you

are using the control point infrastructure

of the BRisa UPnP Framework, the BRisa

Control Point API can notify your appli-

cation about any new UPnP device that

connects to the network.

In Listing 2, lines 9 and 10, I have used

the brisa.control_point.control_point_av.

ControlPointAV.subscribe() method to

tell the BRisa Control Point API to notify

the CommandLineControlPointAV class

when a new UPnP device has been dis-

covered and also to notify this same

class when a UPnP device has left the

network. The notification for both events

is performed by the BRisa Control Point

API by calling the subscribed callback

functions CommandLineControlPointAV.

on_new_device() and CommandLine-

ControlPointAV.on_remove_device().

Note that because of Python’s inheri-

tance mechanism, the class Command-

LineControlPointAV inherits the sub-

scribe() superclass method.

The browse command allows the ap-

plication to browse a specific item in the

media server, and the play command

sends a play request to the media ren-

derer. The class method CommandLine-

ControlPointAV.cmd_browse() is invoked

when the command browse is typed. The

cmd_browse() command makes use of

the browse() superclass method to re-

trieve information on the item from the

current media server.

A similar process occurs with the

play() superclass method, which makes

use of a media renderer previously se-

lected by the user to play the specified

multimedia item. Listing 3 shows how to

use this UPnP control point.

The BRisa framework comes with a

ready-made media server. Rather than

create a new one from scratch, you can

adapt the BRisa media server with the

use of plugins. Next, I will show you

how to develop a simple YouTube plugin

for the BRisa media server. A full imple-

mentation of a YouTube plugin is pro-

vided by the BRisa Project.

The BRisa media server plugin archi-

tecture (Listing 4) allows the addition of

new plugins based on the abstract class

called Plugin. Once you have created

your own classes that inherit from the

brisa.services.cds.plugin.Plugin class,

your class becomes a BRisa media server

plugin, and you should provide the im-

plementation for the abstract methods

load(), unload(), browse(), search().

The most important methods are the last

two, which make the plugin capable of

responding to remote browsing or

searching for multimedia items.

The BRisa UPnP framework provides a

configuration API that allows retrieval of

values from a configuration .ininSTYLE฀
file. The default configuration file for all

parameters used by the BRisa UPnP

Framework and its applications is stored

in the file ~/.brisa/brisa.conf. There-

fore, if you need to store and retrieve

configuration parameters, you should

use the BRisa configuration API.

BRisa’s Content Directory subsystem

detects and loads the plugin. The Con-

tent Directory also delegates the brows-

ing and searching requests when the

BRisa media server receives a request

from a remote control point to retrieve

the multimedia items shared by any in-

stalled plugin.

To deploy your plugin after you finish

implementing it, simply create a folder

01 from brisa.services.cds.plugin

import Plugin

02

03 class MyOwnBRisaPlugin(Plugin):

04

05 def __init__(self):

06 Plugin.__init__(self)

07

08 def load(self):

09 pass

10

11 def unload(self):

12 pass

13

14 def browser(self):

15 pass

16

17 def search(self):

18 pass

Listing 4: BRisa Plugin
Structure

Database

Browsing Request

Plug-in 1

Plug-in i

Plug-in n

Available Plug-ins

Content Directory

Subsystem

Items retrieved by the selected p lugin

Browsing Response

Items formatted into DIDL-XML

1 2 3

4

5

Universal Plug and Play

54 ISSUE 97 DECEMBER 2008

050-056-upnp.indd 54 16.10.2008 17:56:12 Uhr

named my_plugin under the directory

$PYTHON_DIR/site-packages/brisa/ser-

vices/cds/plugins and save your plugin

class in a file called implementation.py

directory. The BRisa media server will

automatically load and export the con-

tent shared by your plugin through the

BRisa Content Directory subsystem. This

mechanism is illustrated in Figure 2.

As shown in Figure 2, the plugin can

use any kind of storage mechanism to

store its contents. When a browsing ac-

tion arrives from the network (step 1),

the BRisa Content Directory subsystem

redirects the browsing to the correct

plugin (steps 2 and 3).

The plugin properly handles the

browse request and returns the multime-

dia items to the BRisa Content Directory

subsystem (step 4). The Content Direc-

tory subsystem gets the returned list of

multimedia items and formats them into

an XML-specific standard known as

DIDL (Digital Item Declaration Lan-

guage) (step 5). DIDL is used to repre-

sent complex digital objects [11].

Finally, the BRisa media server gets

DIDL-XML content, wraps it up into a

SOAP message, and sends it back to the

remote control point that formats the

output in the device screen. On the basis

of this extensible architecture, the BRisa

media server offers the deployment of

third-party plugins that can share multi-

media data from a specific source. For

more about plugin development, see

Section 10 of the BRisa developer docu-

mentation [10].

Listing 4 presents a simple plugin class

stub. Note that the class MyOwnBRisa-

Plugin inherits from the class brisa.ser-

vices.cds.plugin.Plugin. As an example of

a real plugin for the BRisa media server,

Listing 5 shows the most important part

of the YouTube BRisa media server pl-

ugin. In Listing 5, a third-party module

is used to retrieve YouTube items from

the YouTube website. The youtube_api

and youtube_dl modules are imported in

lines 1 and 2 and are used to retrieve

video information and download the .fla

file. Around lines 30 and 33, the class

YoutubePlugin inherits the BRisa plugin

class (as in Listing 4). A BRisa media

server plugin has three important attri-

butes: an id that uniquely identifies a pl-

ugin, the name that is a short descrip-

tion of the plugin, and a usage that indi-

cates to the BRisa media server whether

it should load the plugin automatically.

01 from youtube_api import YouTubeClient

02 from youtube_dl import get_real_video_url

03 from brisa.services.cds.plugin import Plugin

04 from brisa.utils import properties

05 from brisa.upnp.didl.didl_lite import VideoBroadcast

06 from brisa import config

07

08 youtube_video_url = config.get_parameter('youtube',

'videourl')

09

10 class YouTubeItem(VideoBroadcast):

11

12 protocolInfo = 'http-get:*:video/flv:*'

13

14 def __init__(self, id, parent_container_id, namespace,

title, description,

15 duration, author, rating):

16 VideoBroadcast.__init__(self, id,

17 parent_container_id=parent_

container_id,

18 namespace=namespace,

19 author=author,

20 rating=rating,

21 duration=duration,

22 title=title,

23 name=title,

24 description=description)

25 self._uri = get_real_video_url("%s%s" % (youtube_

video_url, id))

26

27 def _gen_uri(self):

28 return self._uri

29

30 class YouTubePlugin(Plugin):

31 id = "7"

32 name = 'youtube'

33 usage = config.get_parameter_bool('youtube', 'usage')

34 videos = {}

35

36 def __init__(self, *args, **kwargs):

37 Plugin.__init__(self, *args, **kwargs)

38

39 def _register_plugin(self):

40 self.ytcontainer = self.plugin_manager.root_

plugin.add_container("YouTube", self.id, "5", self)

41

42 def load(self):

43 self._register_plugin()

44 yt = YouTubeClient('ngR1Q8w0OEk')

45 username = config.get_parameter('youtube',

'username')

46 for video in yt.list_by_user(username):

47 video_info = yt.get_details(video['id'])

48 self.add_item(video['id'], self.ytcontainer.

id,

49 video_info['title'], video_

info['description'],

50 video_info['length_seconds'],

date,

51 video_info['author'], video_

info['rating_avg'])

52

53 def add_item(self, video_id, parent_id, title,

description, duration, date, author, rating):

54 item = YouTubeItem(video_id, parent_id, self.name,

title, description,

55 duration, date, author,

rating)

56 self.videos[video_id] = item

57

58 def browse(self, id, browse_flag, filter, starting_

index, requested_count, sort_criteria):

59 if browse_flag == 'BrowseMetadata' and id != self.

id:

60 return [self.videos[id]]

61 else:

62 return self.videos.values()

Listing 5: BRisa YouTube Plugin

Universal Plug and Play

55ISSUE 97DECEMBER 2008

050-056-upnp.indd 55 16.10.2008 17:56:12 Uhr

The class method _register_plugin(),

line 39, is used to register a plugin folder

(formally known as a UPnP media server

container) in the browse tree of the

BRisa media server. Note that in Listing

3, the browse command is executed

three times: browsing folder 0 (root

folder), then browsing the video folder

(id 2), and then the videoBroadcast

folder (id 5), where the YouTube folder

plugin is registered.

Line 40 (Listing 5) registers the You-

Tube plugin folder under the folder Vid-

eoBroadcast. Note that the YouTube

plugin uses the BRisa RootPlugin to reg-

ister its folder. The RootPlugin is a spe-

cial Content Directory subsystem plugin

that creates the default containers of the

BRisa media server (Audio, Video, and

Pictures), as shown in Figure 3.

Each item of the default containers is

statically identified by an id. The id for

VideoBroadcast is 5, which corresponds

to the third parameter passed to the

method add_container() provided by the

RootPlugin. From line 41 to 50, the

plugin method load() loads all the user’s

uploaded videos and stores them in the

list of videos represented by the videos

attribute of the plugin. In line 45, the

plugin makes use of the BRisa Configu-

ration API. Finally, the method browse is

called by the Content Directory subsys-

tem when the user sends a browse re-

quest to youtube:7 and returns the list of

videos loaded by the plugin (Listing 3).

To identify the YouTube folder Content

Directory, the subsystem combines the

plugin attributes id and name, which is

why the result produced for the YouTube

registered folder is youtube:7. This same

idea relates to the YouTube shared items,

such as youtube:hDiLH7jmVsU, used in

the example shown in Listing 3. In this

manner, when the Content Directory

Subsystem receives a requests for the

tuple youtube:hDiLH7jmVsU, it splits in

two parts at the “:” character, which per-

mits it to identify the plugin and the re-

quested item specified by the control

point.

After you finish implementing your pl-

ugin, you must create the directory my_

youtube_plugin under the directory $PY-

THON_DIR/site-packages/brisa/services/

cds/plugins, put your plugin source code

in the file implementation.py, and save it

under the directory you created.

The BRisa media server will load your

plugin automatically, and you can now

use the UPnP command-line Control

Point example or create a more elaborate

control point to browse your shared

items using the Canola Media Player.

Figure 3 shows a list of videos shared by

the YouTube plugin.

In this article, I presented the basic con-

cepts of UPnP, a very flexible standard

that lets computers, peripherals, appli-

ances, and electronic devices automati-

cally connect and share services. By de-

fining and publishing UPnP device and

service descriptions through the BRisa

UPnP framework, developers have an

open source, but powerful, mechanism

to simplify the implementation of de-

vices and services.

In this article, I focused on the UPnP

Audio and Video specification, but the

BRisa UPnP framework also provides ex-

tensible resources to implement other

kinds of UPnP services, such as tools for

controlling home automation devices.

The BRisa UPnP Project is getting at-

tention from many developers, but, like

other open source tools, BRisa is a work

in progress. We are

currently developing

BRisa plugins for some

well-known online ser-

vices, including Yahoo

Music, Facebook,

Orkut, and PicasaWeb.

These plugins will let

users centralize all

their Internet-based

multimedia content in

one convenient and

flexible UPnP service

provided by the BRisa

media server. p

UPnP BRisa project in the end of

2006. He manages the developer

group for the BRisa UPnP Framework

and its base applications and works at

-

supported by Nokia Institute of Tech-

nology, Brazil. Thanks to the other au-

thors who contributed to this article:

Angelo Perkusich, Hyggo Almeida,

André Dieb, José Luis, Thiago de

-

Chencarek and André Magalhães

-

T
H

E
 A

U
T

H
O

R

A. Mukherjee, Computer, IEEE Com-

http:// www. upnp. org/

Louridas, IEEE Software

http:// www. upnp. org/

 standardizeddcps/ mediaserver. asp

-

ference on Consumer Electronics,

IEEE

Transactions on Consumer Electron-

ics

http:// brisa. garage. maemo. org

http:// brisa. garage. maemo. org/

 documentation-enduser. htm

irc. freenode. com, channel brisa

http:// brisa. garage. maemo. org/

 documentation-developer. htm

-

posium on Consumer Electronics,

INFO

Universal Plug and Play

56 ISSUE 97 DECEMBER 2008

050-056-upnp.indd 56 16.10.2008 17:56:12 Uhr

