
n the old days, Linux pioneers were

expected to install new hardware

manually, but Linux now offers auto-

matic hardware detection at system boot

time, as well as on-the-fly configuration

of pluggable devices – whether the de-

vice is a USB stick, a digital camera, or a

Bluetooth phone.

The Udev subsystem takes the pain

out of accessing new devices, and a pair

of components known as the Hardware

Abstraction Layer (HAL) and D-Bus pro-

vide an interface from the hardware to

desktop applications.

Udev [1], which runs in the

background as the udevd

daemon, creates dynamic

device files under /dev

whenever it identifies a new device. The

Udev daemon finds the devices at sys-

tem boot time, and it also sets up new

devices that are plugged in while the

system is running – a feature that is

commonly called hot plugging. The pro-

gram might also create symbolic links

for mass storage media such as disks

or USB sticks under /dev/disk to point

to the physical device files under /dev.

The Udev system makes sure device

files are only created for existing devices.

The kernel monitors the USB bus and

detects the device you just plugged in. It

generates a Uevent to report its findings

to the Udev daemon. The Udev system

processes the information by retrieving

the data for the device from the kernel

device database, Sysfs. The Udev rules

specify what Udev does with the new

device. The rules, which are located

under /etc/udev/rules.d/, comprise a

number of individual files that define

 actions for various events.

As Listing 1 shows, rule file names

start with numbers. The idea behind the

numerical approach is to specify the pro-

cessing order because some dependen-

cies might need to be resolved to com-

plete the configuration.

If you are interested in more detail on

creating Udev rules, check out the article

at kernel.org [1].

If you are interested, you can watch

Udev working. The Udevmonitor tool

gives you this option. Udevmonitor

shows you the kernel Uevents that occur

when you plug in a device (say, a USB

stick) along with the matching Udev re-

sponses (Listing 2).

All the lines starting with UEVENT

 relate to kernel messages, whereas the

lines that start with UDEV identify Udev

actions. The new device is accessible via

the /dev/sdb1 device file, as you can see

from the last line in Listing 2. A quick

glance at /dev/disk/by-label re-

veals a link with the name the

USB stick used to register with

the system. The matching

symbolic link for the stick

in this example is DISK_

IMG, which points to /

dev/sdb1, matching the

Udevmonitor output.

In this case, the

system just used the

name.

Many, but not

all, devices reg-

ister with their

Udev, HAL, and D-Bus provide

automated hardware configura-

tion, even if you plug in on the fly.

We'll help you easily access new

devices. BY ERIC AMBERG

Hardware Detection

48 ISSUE 95 OCTOBER 2008

048-051_udev.indd 48 13.08.2008 16:13:30 Uhr

model designations, or at least with their

manufacturers’ names. In this example,

DISK_IMG is not very helpful.

In the case of USB devices, you can re-

define the label for a device you plug in

by issuing the lsusb command, as shown

in Listing 3. The example here shows a

Hewlett Packard keyboard and a digital

camera, both of which are registered

with their full device designations.

After Udev has completed its chores, the

Hardware Abstraction Layer (HAL) [2]

makes its contribution. The idea behind

HAL is that applications should be able

to access hardware without the need to

know anything about the details. HAL

acts as an interface between the hard-

ware and the applications.

To allow this to happen, HAL draws

information from several sources. For

one thing, it listens directly to system

buses, for another, it retrieves informa-

tion from Udev, the kernel, and certain

other global and user-specific configura-

tion files.

More information is stored in XML-for-

matted FDI files under /usr/share/hal/

fdi/information/. The FDI files contain

long lists of information on devices by

individual vendors, such as CD/ DVD

writers or digital cameras. HAL can draw

on this resource to provide detailed in-

formation on the hardware.

If you want to view this information,

you can either use lshal at the command

line or launch a graphical front end,

such as the HAL Device Manager (Figure

1), Gnome Device Manager, or KDE HAL

Device Manager.

HAL, which is developed by the

Freedesktop.org project [3], runs in the

background in the form of the hald dae-

mon. On top of this, it launches some

Hardware Detection

49ISSUE 95OCTOBER 2008

ls /etc/udev/rules.d/

05-udev-early.rules

64-md-raid.rules

40-alsa.rules

70-kpartx.rules

40-bluetooth.rules

70-persistent-cd.rules

50-udev-default.rules

70-persistent-net.rules

55-hpmud.rules

75-cd-aliases-generator.rules

55-libsane.rules

75-persistent-net-generator.rules

56-idedma.rules

77-network.rules

60-cdrom_id.rules

79-yast2-drivers.rules

60-persistent-input.rules

80-drivers.rules

60-persistent-storage.rules

90-hal.rules

64-device-mapper.rules

95-udev-late.rules

Listing 1: The Rules File

udevmonitor

udevmonitor will print the received events for:

UDEV the event which udev sends out after rule processing

UEVENT the kernel uevent

UDEV [1212504262.814732] add /devices/pci0000:00/0000:00:1d.7/usb3/3-1 (usb)

UDEV [1212504262.814934] add /devices/pci0000:00/0000:00:1d.7/usb3/3-1/usb_endpoint/usbdev3.7_ep00

(usb_endpoint)

UDEV [1212504262.815017] add /devices/pci0000:00/0000:00:1d.7/usb3/3-1/3-1:1.0 (usb)

UDEV [1212504262.815086] add /class/scsi_host/host5 (scsi_host)

UDEV [1212504262.815146] add /devices/pci0000:00/0000:00:1d.7/usb3/3-1/3-1:1.0/usb_endpoint/usbdev3.7_

ep01 (usb_endpoint)

UDEV [1212504262.815193] add /devices/pci0000:00/0000:00:1d.7/usb3/3-1/3-1:1.0/usb_endpoint/usbdev3.7_

ep81 (usb_endpoint)

UEVENT[1212504263.666057] add /devices/pci0000:00/0000:00:1d.7/usb3/3-1/3-1:1.0/host5/

target5:0:0/5:0:0:0 (scsi)

UEVENT[1212504263.666112] add /class/scsi_disk/5:0:0:0 (scsi_disk)

UEVENT[1212504263.673463] add /block/sdb (block)

UEVENT[1212504263.673511] add /block/sdb/sdb1 (block)

UEVENT[1212504263.673538] add /class/scsi_device/5:0:0:0 (scsi_device)

UEVENT[1212504263.673565] add /class/scsi_generic/sg2 (scsi_generic)

UDEV [1212504263.716085] add /devices/pci0000:00/0000:00:1d.7/usb3/3-1/3-1:1.0/host5/

target5:0:0/5:0:0:0 (scsi)

UDEV [1212504263.733094] add /class/scsi_disk/5:0:0:0 (scsi_disk)

UDEV [1212504263.793736] add /class/scsi_device/5:0:0:0 (scsi_device)

UDEV [1212504263.823559] add /class/scsi_generic/sg2 (scsi_generic)

UDEV [1212504263.831015] add /block/sdb (block)

UDEV [1212504263.900340] add /block/sdb/sdb1 (block)

Listing 2: Udevmonitor Output

048-051_udev.indd 49 13.08.2008 16:13:34 Uhr

auxiliary services when necessary. The

services typically appear as entries start-

ing with hald-addon- in the process list.

A service typically monitors the status of

a device.

If you find an entry for hald-ad-

don-storage: polling /dev/hda, this

means the device that follows /dev/hda

is currently being polled; it is a CD/ DVD

drive in this example.

Although HAL provides device informa-

tion for applications, it does not commu-

nicate directly with them. This is the do-

main of D-Bus [4], which is also main-

tained by the Freedesktop.org project

and interacts very closely with HAL.

D-Bus is an IPC

framework geared

to the needs of

desktop applica-

tions, and it is part

of nearly any Linux

distribution today.

D-Bus is used for

communication

 between desktop

applications within

the same desktop

session, as well as

communication be-

tween the operating

system and its com-

ponents.

The idea behind

the IPC framework

has been around

for some time. Both

major desktops –

Gnome and KDE – made heavy use of

completely different approaches in the

past, with Gnome mainly relying on

Corba [5] and KDE using DCOP [6].

Windows, which also has IPC services,

relies on the proprietary DCOM [7].

Other IPC mechanisms also exist on

Linux, however, they are restricted to

specific tasks.

D-Bus also runs as a daemon and pro-

vides two communications channels or

buses. The system bus is launched at

boot time and is available whether the

user logs on to the GUI system or not;

that is, it runs all the time.

If a user logs on to the graphical inter-

face, a second bus is launched: the

 session bus. The daemon process,

dbus-daemon, has two options for this:

--system and --session.

Whereas the daemon process for the

system bus reads its configuration pa-

rameters from the /etc/dbus-1/system.

conf file, the session bus parses /etc/

dbus-1/session.conf. Incidentally, the

dbus-launch program is used to launch

the daemon.

Dbus-launch runs permanently as a

daemon during a graphical user session,

just in case it needs to launch further

session bus processes.

After the user logs off, dbus-launch

and the corresponding session bus ter-

minate, leaving the system bus running.

Figures 2 and 3 show the interrelation-

ships.

Hardware Detection

50 ISSUE 95 OCTOBER 2008

No graphical user session

started after booting

User logs on to the graphical

interface

User logs off

Active D-Bus processes:
/usr/bin/dbus-daemon --system

Active D-Bus processes:
/usr/bin/dbus-daemon --system

/usr/bin/dbus-launch

/usr/bin/dbus-daemon --fork --session

Active D-Bus processes:
/usr/bin/dbus-daemon --system

Sysfs

USB Bus

Kernel messages

Kernel messages

Kernel messages

USB

Stick
HAL D-Bus

Desktop applications:

Gnome Volume Manager

Solid

Udev

Uevent: Short form of User Event. This

means a notification event from the

 kernel to programs in userspace. This

memory area, which is separate from

the kernel space, is populated by normal

programs and non-kernel subsystems.

The Udev subsystem runs in userspace.

Sysfs: A virtual filesystem that was in-

troduced with kernel version 2.6. It is

normally accessible under /sys and

makes device and driver information

 defined in the Kernel Device Model, the

kernel’s internal device database, avail-

able to programs in userspace.

IPC: Short for Interprocess Communica-

tion, a method of communication and

data exchange between processes on

the same computer.

GLOSSARY

048-051_udev.indd 50 13.08.2008 16:13:36 Uhr

If an application requests a specific de-

vice class (such as camera, or storage)

HAL uses D-Bus to notify the program

as soon as the status of a device in this

class changes. For example, the Gnome

Volume Manager launches the gthumb-

import import tool when you connect a

camera (Figure 4).

KDE 4 has an applet in the form of a

laptop icon labeled Device Monitor. The

applet collaborates with D-Bus to display

new hardware you plug in.

At the same time, it lets you launch a

specific action depending on the device.

For example, you could launch the Dol-

phin file manager to display

the content of any USB sticks

you plug in.

KDE’s Solid framework is

configured via the system

preferences. So far, hardware

detection has only been im-

plemented for HAL manage-

ment, the network, and Blue-

tooth.

Just a couple of years ago,

configuring new hardware on

Linux was a daunting task

and just one more reason for

newcomers to keep clear.

Now, Linux offers convenient

device management that pro-

vides trouble-free, dynamic handling of

devices plugged in at run time – includ-

ing WLAN sticks, digital cameras, and

even camcorders. Linux can listen on in-

terfaces such as Bluetooth and Firewire

and, if necessary, not only integrate a

device you plug in, but launch the

matching application as well.

Fortunately, the trend in recent

months has been toward standardizing

the underlying technologies. Udev has

already clearly ousted its predecessor,

Devfs, and found its way into the Linux

kernel. Now the Freedesktop.org-spon-

sored team of HAL and D-Bus is estab-

lishing itself in the face of competition

from the previous Gnome and KDE fa-

vorites, Corba and DCOP.

This merge has greatly improved com-

munications between the two desktop

environments. Gnome already has a ma-

ture front end for dynamic device man-

agement with Gnome Volume Manager

and related tools. KDE is following suit

after considerable restructuring of its

 libraries in version 4.

The KDE Solid hardware library adds

a new and powerful framework to make

hardware management on KDE easier

than ever. In the months to come, you

can look forward to more dynamic de-

vice management fireworks. p

Hardware Detection

51ISSUE 95OCTOBER 2008

[1] Udev: http:// www. kernel. org/ pub/

 linux/ utils/ kernel/ hotplug/ udev. html

[2] HAL: http:// www. freedesktop. org/

 wiki/ Software/ hal

[3] Freedesktop.org:

http:// www. freedesktop. org/ wiki

[4] D-Bus: http:// www. freedesktop. org/

 wiki/ Software/ dbus

[5] Corba:

http:// de. wikipedia. org/ wiki/ CORBA

[6] DCOP: http:// developer. kde. org/

 documentation/ other/ dcop. html

[7] DCOM for programmers:

http:// msdn. microsoft. com/ en-us/

 library/ ms809311. aspx

INFO

Eric Amberg has worked for many

years as a System Engineer for IT net-

works, specializing in Linux and net-

work security for large corporations.

On top of this, he has published

books and articles on Linux. His latest

book, Linux Servers with Debian

GNU/ Linux (German) was published

in June 2007.

T
H

E
 A

U
T

H
O

R

lsusb

Bus 001 Device 005: ID 03f0:0024

Hewlett-Packard

Bus 001 Device 001: ID 0000:0000

Bus 005 Device 001: ID 0000:0000

Bus 004 Device 001: ID 0000:0000

Bus 002 Device 002: ID 04a9:3073

Canon, Inc. PowerShot A70 (ptp)

Bus 002 Device 001: ID 0000:0000

Bus 003 Device 001: ID 0000:0000

Listing 3: lsusb

In the past, users had to manually mount

devices such as CDs or DVDs, but Gnome

systems now handle this task through the

Gnome Volume Manager. The manager

dynamically creates an icon on your desk-

top, which you can then click to access the

CD or DVD. Other external mass memory

devices, such as USB sticks, are also

mounted automatically by the software.

The Gnome Volume Manager creates a

matching subdirectory under /media,

where it mounts the device. The directory

is named after the name the device uses

to register with the system.

Depending on your configuration, the

manager might also launch a matching

application. In the case of mass storage

devices such as CD/ DVDs, USB sticks, or

USB hard disks, you can launch the file

browser to display the contents below the

mount point for the dynamically mounted

device (Figure 5).

If you connect a digital camera, the

Gnome Volume Manager will launch an

image viewer or the import routine associ-

ated with an image viewer.

The Gnome volume manager has a num-

ber of configuration options. Gnome Vol-

ume Properties dialog, which you can

launch by popping up a terminal window

in Gnome, handles the options (Figure 6).

For each device class, such as digital cam-

eras, mass storage, printers, and scan-

ners, you can define a specific response.

This means that you can configure the

system to, say, auto-detect and set up new

printers.

KDE has a similar framework. Whereas

KDE formerly experimented with home-

cooked solutions like Corba or DCOP, the

developers moved to Udev/ HAL/ D-Bus

some time ago. Both major desktop envi-

ronments now use the same underpin-

nings for device management. KDE ver-

sion 4 and later relies on the Solid pro-

gram package to offer functionality similar

to Gnome Volume Manager.

Hot-Wired

048-051_udev.indd 51 13.08.2008 16:13:37 Uhr

