
f you have ever tried to program a

rotating cube in OpenGL, you have

probably experienced hours of de-

bugging fun in the process. The lack of

libraries and incorrect variable declara-

tions make life hard on amateur pro-

grammers.

A graphics programming tool called Pro-

cessing brings graphic effects back to the

everyday user. Processing targets artists

who have ideas but no computer science

degree. The tool is ideal for users who

would like to improve the presentation

of their data without having to resort to

boring charts and monotonous multi-

colored pie diagrams.

The Code Swarm [1] project, for exam-

ple, uses Processing to visualize the de-

velopment of various open source

projects over the course of

time. The fascinating results resemble a

beehive, which is sometimes quiet and

sometimes populated by large numbers

of very active bees.

Processing lets you write a simple pro-

gram and then just press Play; the code

either runs or it doesn’t. In the latter

case, you are given fairly intelligible

feedback to help you troubleshoot. If

you want to publish your results on the

Internet, you can output a ready-made

Java applet at the press of

a button, and you can up-

load it to your web space

or web server.

Processing, which first

saw the light of day

around 2001 at MIT Labs,

is often compared with

Flash; however, unlike

Flash, it is an open

source project. Instead of Flash plugins,

the viewer simply needs a Java plugin

for the browser, an extension that is typi-

cally installed in next to no time.

To enjoy the 3D capabilities of the Pro-

cessing environment, you need either a

graphics card with 3D acceleration and

driver support or the software 3D engine

that comes with the Java application,

P3D. The P3D 3D engine needs slightly

more in the way of resources than

OpenGL, but it is a big help if you do not

have a working 3D driver for your graph-

ics card on Linux.

Processing is available for download

from the project website [2]. First, un-

pack the TGZ archive in a folder below

your home directory, then pop up a con-

sole, change to the directory created in

the first step, and enter ./processing to

launch the application.

After launching the program, you will

see an empty field in which you can

start typing code (Figure 1). Why not try

it out right way? Just type the program

shown in Listing 1 in the

window, and then press the

icon with the triangle at the top

left. Now you should see the ob-

ject shown in Figure 2 (left).

When you run

the code in Listing

1, you should see a

small window depict-

ing a series of con-

centric circles.

Click Help | Refer-

ence in the Processing

GUI for a command ref-

erence that gives you a

short and terse explanation of the indi-

vidual functions.

If you prefer a more detailed descrip-

tion, select File | Examples to discover

The Java application known as Processing can make a computer artist

of a non-programmer. We’ll show you how to create moving objects

and publish a Flash-style applet. BY KRISTIAN KISSLING

Processing

68 ISSUE 95 OCTOBER 2008

sRGB Color Space: An additive color

space in which each color is defined by

the red, green, and blue components

with a depth of 8 bits per channel.

GLOSSARY

068-071_processing.indd 68 13.08.2008 15:48:24 Uhr

one of the many sample programs in-

cluded with the Processing files. The

code is annotated in all cases.

Also, you can find some books on Pro-

cessing. The tome by Ira Greenberg [3]

that I recommend targets artists and

non-programmers.

The first two lines of the sample pro-

gram in Listing 1 open a 200x200-pixel

workspace with a white background

(background(255)). If you just enter one

value, you are selecting one of 255 possi-

ble grayscales from 0 (black) to 255

(white). If you enter three comma-sepa-

rated values, you are specifying the

sRGB color space. A background(255, 0,

0) entry would give you a pure red back-

ground, for example. To add a black

brush stroke, follow the same approach

(stroke(0)).

The noFill() function tells Processing

not to fill the figures – otherwise the

largest circle would cover all the others.

An anti-aliasing effect gives smoother

edges and is enabled by the aptly named

smooth() keyword, which acts on all the

following figures. Next, a for() loop exe-

cutes a specific function until a stop con-

dition occurs (in this case, when i

reaches a value of 200).

The loop starts by setting the integer

counter to zero (int i =0) and then in-

crementing in steps of 10 (i+=10). The

loop continues while the counter is less

than 200 (i < 200). As soon as it reaches

the target value, the loop terminates.

Each round executes the ellipse() func-

tion in line 7. The function draws a circle

with the specifications given in the pa-

rentheses. The values 100, 100 position

the center of the circle at the center of

the 200x200-pixel workspace. The two i

variables define the vertical and horizon-

tal diameters of the circle. Because i in-

crements in steps of 10, Processing starts

by drawing a circle with a diameter of

10, then 20 pixels, and so on.

Small changes can have drastic effects

in programming. For instance, if you

change the second i in the brackets fol-

lowing ellipse and replace it with 100,

as in

ellipse(100, 100, i, 100)

you change the circle to an ellipse (Fig-

ure 2, right). While the horizontal diam-

eter continues to grow, thanks to the re-

maining i, the vertical diameter remains

constant at 100 pixels.

The next step adds a random element.

Replace the for() loop in Listing 1 with

the loop in Listing 2.

The new loop introduces a new

 element with the random variable r. In

each round, the line float r = ran-

dom(200); creates a floating point num-

ber (float) between 0 and 200 and stores

it in variable r. This continually chang-

ing number explains the irregular hori-

zontal distances in Figure 3. Adding a

second random number (Listing 3) and

leaving the vertical diameter to chance

(Figure 4) adds more randomness. The

figure looks more spatial, but it is by no

means three dimensional.

It is quite easy to enter the third dimen-

sion with Processing. To demonstrate

this, Listing 4 draws a simple cube. The

great thing about it is that it reacts to

mouse movements – you can push or

drag it through the defined workspace

(Figure 5). Unfortunately the screenshot

tool on Gnome doesn’t show you where

the mouse is, but you can take my word

for it that the mouse was at the center of

the cube in all three figures.

The code comprises two basic func-

tions: setup() and draw(), which contain

other functions. The setup function de-

fines the basic parameters for the pro-

gram, and the draw function draws a

specific object and executes the com-

mands inside the curly brackets before

restarting.

The first function in line 2 initializes

the workspace; the extent is followed by

an ominous looking P3D keyword,

which initializes Processing’s internal,

software-based 3D engine. The engine

calculates 3D graphics and sends them

to the graphics card, which renders them

on screen. To use OpenGL

to render the graphic with

the use of the faster hard-

ware-based 3D graphics

card support, just add the

following line at the start

of the code:

import processing. 5฀

opengl.*;

Then replace P3D with

OPENGL in Listing 4. On

Processing

69ISSUE 95OCTOBER 2008

01 size(200, 200);

02 background(255);

03 stroke(0);

04 noFill();

05 smooth();

06 for(int i = 0; i < 200; i +=

10) {

07 ellipse(100, 100, i, i);

08 }

Listing 1:
Drawing a Simple Figure

01 for(int i = 0; i < 200; i +=

10) {

02 float r = random(200);

03 ellipse(100, 100, r, 100);

04 }

Listing 2:
Changing a Parameter

068-071_processing.indd 69 13.08.2008 15:48:25 Uhr

faster machines you will not notice any

difference for simple figures.

To see improved performance with

more complex figures, you will need a

graphics card with 3D acceleration; in

other words, you have to install the

Nvidia, ATI, or Intel drivers.

Line 3 specifies the frame rate. A value

of 30 should be fine, and you will not

notice any jerky movements.

The next step relates to the properties

of the cube. The example here uses light

gray as the background color (back-

ground(200)).

The functions pushMatrix() and pop-

Matrix() in lines 8 and 14 draw a frame-

work around the figure. Whereas push-

Matrix() creates a new coordinate sys-

tem and loads it onto the Matrix Stack

[4] (see the box titled “What is the Ma-

trix?”), popMatrix() restores the matrix

used previously.

Although the program will work with-

out these two functions, they do make

sense, as the next example shows.

Inside the matrix, the first function is

translate(). It reads the three parameters

and positions the cube on the intersec-

tion of the x-, y-, and z-axes – that is, in

virtual space.

The function assumes a value of 0, 0

for the top left of the workspace and sets

the center of the figure to these coordi-

nates.

Any further translate

functions that follow

inside the draw func-

tion will use the previ-

ous translation coordi-

nates as their reference

point. This means that

you can move the cube

easily with the mouse

because mouseX,

mouseY will always

 relate to the mouse

pointer’s previous x/y

coordinates.

The next trick is to define a color in

the variable c1 – light gray in this case,

although you can use sRGB values here,

too. The script fills the cube with this

color in line 11 and colors the edges dark

gray by calling stroke().

The cube isn’t actually assembled

until line 13; the edge length is set to 150

pixels. To draw a cuboid, you need to

enter three values for the length, width,

and height.

Finally, Listing 5 presents a more com-

plex script. It displays two counter-rotat-

ing green cubes (see Figure 6).

Short comments make the code more

intelligible, but the most important fea-

tures are the use of pushMatrix() and

popMatrix() and the commands for ro-

tating the figures.

In lines 3 to 7, I start by initializing

two variables for each cube – an xdirec-

tion and a ydirection – with values of 1

and -1, respectively. The setup function

is already familiar, but the draw function

changes.

The script calls directionalLight() to

shed some light on the cube. The func-

tion has six parameters, the first three

of which are for an sRGB or HSV value,

and the last three of which are positions

on the x-, y-, and z-axes of a spatial coor-

dinate system. The first three values

specify the color of the light, and the last

three define the direction from which the

light comes.

The script defines the size, color, and

rotation of the two cubes between the

pushMatrix() and popMatrix() func-

tions. The functions are the same for

both cubes apart from one detail: The ro-

tateX() and rotateY functions use oppo-

site directions of rotation.

Lines 40 and 41 rotate cube 2 one de-

gree counterclockwise on the x- and y-

axes. Both variables start with a value of

-1. Cube 1 rotates in the opposite direc-

tion. Because they are centered on the

same position, they counter-rotate. After

this minimal rotation, new values are as-

signed to the variables in lines 46 to 52.

The torque is incremented for cube 1

and decremented for cube 2. Processing

executes the draw function again, and

both cubes counter-rotate another de-

gree. Because the draw function uses a

frame rate of 30 frames per second, the

cubes rotate smoothly.

One other interesting aspect might in-

terest you: If you remove the pushMa-

trix() and popMatrix() functions in the

sample code, the second cube suddenly

orbits the first like a planet. Each cube

HSV: A color space that defines the color

with reference to the hue, saturation,

and value.

GLOSSARY

The following example will give you a

rough idea of the Matrix Stack. If you

create a series of three sequences, each

comprising multiple movements, each

sequence starts with the pushMatrix()

function, which creates a new coordi-

nate system. To return to the previous

sequence, with the previously used co-

ordinates, you just do a popMatrix().

The whole thing works like a kind of re-

turn marker, but you can’t jump forward.

What is the Matrix?
01 void setup() {

02 size(400, 400, P3D);

03 frameRate(30);

04 }

05

06 void draw() {

07 background(200);

08 pushMatrix();

09 translate(mouseX,mouseY,10);

10 color c1 = color(180);

11 fill(c1);

12 stroke(128);

13 box(150);

14 popMatrix();

15 }

Listing 4: A Simple Cube

01 for(int i = 0; i < 200; i +=

10) {

02 float r = random(200);

03 float s = random(200);

04 ellipse(100, 100, r, s);

05 }

Listing 3:
Adding Randomness

Processing

70 ISSUE 95 OCTOBER 2008

068-071_processing.indd 70 13.08.2008 15:48:26 Uhr

would need a separate coordinate sys-

tem – unless you want to design a vir-

tual planetarium.

By default, Processing stores your efforts

in a folder titled sketchbook below your

home directory. If you save your creation

as experiment_0815, you would find it

later in ~/sketchbook/experiment_0815/.

To show off your programming skills

to friends, colleagues, and acquain-

tances, you might want to publish your

figures on the web. Selecting File | Ex-

port lets you do so. Processing will then

create an applet subfolder below the

above-mentioned directory and drop

the required files into it. If you open the

index.html file in your browser, you

should see the figure.

To publish the figure on your homep-

age, just use an FTP client to push the

applet folder onto the server with your

website and add a link to index.html to

your homepage.

If you want to access the file directly,

just go to http://www.mydomain.com/

applet/index.html. p

[1] The Code Swarm project uses

 Processing: http:// code. google. com/

 p/ codeswarm/

[2] Download page for Processing:

http:// processing. org/ download/

 index. html

[3] Greenberg, Ira A. Processing:

 Creative Coding and Computational

Art. Computer Bookshops, New

York, 2007.

[4] pushMatrix() and popMatrix()

 explained:

http:// processing. org/ discourse/

 yabb_beta/ YaBB. cgi? board=Syntax;

action=display;num=1177279317

INFO

01 import processing.opengl.*;

02

03 float ydirection1 = 1;

04 float xdirection1 = 1;

05

06 float ydirection2 = -1;

07 float xdirection2 = -1;

08

09 void setup() {

10 size(400, 400, OPENGL);

11 frameRate(30);

12 }

13

14 void draw() {

15 background(0);

16 directionalLight(255,255,128,

0,0,-1);

17

18 /* Cube 1 */

19 pushMatrix();

20

21 translate(200,200,100);

22 color c1 = color(102, 102,

0);

23 fill(c1);

24 stroke(204,102,0);

25

26

rotateY(radians(ydirection1));

27

rotateX(radians(xdirection1));

28

29 box(100);

30 popMatrix();

31

32 /* Cube 2 */

33 pushMatrix();

34

35 translate(200,200,100);

36 color c2 = color(102, 102,

0);

37 fill(c2);

38 stroke(204,102,0);

39

40

rotateY(radians(ydirection2));

41

rotateX(radians(xdirection2));

42

43 box(100);

44 popMatrix();

45

46 /* cube 1 clockwise */

47 ydirection1 = ydirection1 +

1;

48 xdirection1 = xdirection1 +

1;

49

50 /* cube 2 counterclockwise */

51 ydirection2 = ydirection2 -

1;

52 xdirection2 = xdirection2 -

1;

53

54 }

Listing 5: Counter-Rotating Cubes

Kristian officially

studied german phi-

lology, history and

social science in

Berlin but wasted a

lot of his time with

computers. He got

hooked on Linux in

the 90ies and works now as editor for

LinuxUser.

T
H

E
 A

U
T

H
O

R

Processing

71ISSUE 95OCTOBER 2008

068-071_processing.indd 71 13.08.2008 15:48:27 Uhr

