

multitude of technologies support load balancing for web servers.

Load balancers come in all shapes and sizes, from simple DNS-

based techniques through vast and versatile proprietary systems. In

some cases, however, the load balancing features you need might be available already

through the Apache web server. In this article, I describe some strategies for load balancing

with Apache.

The schematic in Figure 1 shows the underlying structure of a software-based balancing system. In this scenario,

several front-end load balancers accept incoming user requests and distribute them to a pool of back-end servers

on the basis of a predefined scheme. Multiple individual systems can run in parallel to provide a fail-safe (shown in the

 background in Figure 1). Apache includes a number of modules for supporting load balancing (Table 1), and you’ll need to

make sure any modules you intend to use are loaded:

Today’s web performance and availability requirements make load balancing indispensable.

In this article, we show you how to set up an effective load balancing system using

 features built into the Apache web server. BY ERIK ABELE

Apache Load Balancing

34 ISSUE 94 SEPTEMBER 2008

LoadModule xyz_module

modules/mod_xyz.so

As you can see in Table 1, Apache’s

basic load balancing capabilities include

features such as caching, compression,

URL rewriting, and header processing.

Some of the modules in Table 1 are

loaded by default.

Consult your own Apache configura-

tion for more on which modules might

already be present on your system.

If JServ-capable application servers,

such as Apache Tomcat or Jetty, are

used, the gateway can also use the

Apache JServ Protocol (ajp). All you

need to do is load the mod_proxy_ajp

module instead of mod_proxy_http and

change the URLs from http:// to ajp://.

The use of this binary-format protocol

offers a couple of advantages with re-

gard to back-end connection perfor-

mance and lower resource overheads,

but this functionality is bought at the

price of more permanent connections

to the back ends.

Incidentally, you can run ajp and http

back ends at the same time as members

of the same pool. For the sake of com-

pleteness, keep in mind also that Apache

supports ftp proxy with the mod_proxy_

ftp module.

For additional details, check out the

Apache http server documentation [2].

The sample configuration shown in List-

ing 1 includes the basic front-end server

settings for load balancing in Apache.

This configuration starts with Proxy-

Requests to disable the normal proxy

mode and setting up what is known as

a reverse proxy, or

gateway, to be more

precise. Disabling Via

headers (ProxyVia)

makes the gateway

invisible.

The ProxyPreserve-

Host and ProxyError-

Override commands

ensure that the host

headers included in

the request are

passed on to the back

ends and that any

error messages gener-

ated by the back ends

are replaced by the

load balancer and thus standardized.

The output of a suitable timeout, with

ProxyTimeout, rounds off the basic

 configuration.

The core definition, that of a back-end

pool and its members, is handled by a

Proxy container and the specification

of a special balancer:// schema followed

by the pool name. The BalancerMember

instructions and parameters in the con-

tainer specify the individual members

along with their properties.

At the end of the configuration, the

back-end pool defined previously is

 assigned a separate URL space; more

 parameters define the load balancer’s

 generic approach. To enable regular ex-

pressions, you could use the advanced

ProxyPassMatch command instead of

ProxyPass.

As an alternative, the rewrite module

(mod_rewrite) and custom rules would

unleash the full power of regular expres-

sions. However, in this case, you will

need to use ProxySet because load bal-

ancer parameters cannot be modified by

rules:

ProxySet balancer://pool1

 lbmethod=bytraffic

...

RewriteEngine On

RewriteRule ^/+(.*)$

 balancer://pool1/$1 [P,L]

Listing 1 thus defines two back-end serv-

ers for pool1. Requests are distributed on

the basis of the number of requests (see

the lbmethod parameter). The load

 factor setting assigns twice as many

 requests to server1 compared with

server2. Connections are reused but also

restricted to a maximum value. The URL

space is defined as the complete URL

space below /shop.

Table 2 provides a summary of the

most common ProxyPass and Balancer-

Member commands. For more informa-

tion, see the Apache http server docu-

mentation [2].

The Apache http server’s proxy module

(mod_proxy) provides an unbelievable

range of special settings. Tools are avail-

able for many different scenarios. For

01 ProxyRequests Off

02 ProxyVia Off

03

04 ProxyPreserveHost On

05 ProxyErrorOverride On

06

07 ProxyTimeout 30

08

09 <Proxy balancer://pool>

10 BalancerMember http://

server1:8080 \

11 min=10 max=50 loadfactor=2

12

13 BalancerMember http://

server2:8080 \

14 min=5 max=25 loadfactor=1

15 </Proxy>

16

17 ProxyPass /shop balancer://

pool1 \

18 lbmethod=byrequests \

19 nofailover=Off maxattempts=3

\

20 stickysession=PHPSESSIONID

Listing 1: Sample Configuration

01 CacheEnable disk /

02 CacheDisable /users

03 CacheRoot /var/cache/httpd

04 ...

05 AddOutputFilterByType DEFLATE

text/html

Listing 2: mod_cache
Sample Configuration

Apache Load Balancing

35ISSUE 94SEPTEMBER 2008

 example, you can use the status parame-

ter to operate a hot standby server:

BalancerMember

http://server4:1080... status=+H

This command specifies that server4 is

only enabled if all the remaining pool

members fail.

This server is the last line of defense

and can be used to serve up a restricted

version of a web application or to for-

ward requests to a

substitute system.

Another typical

configuration is

used to support

sticky sessions:

BalancerMember

http://server6:

1080...

stickysession=

JSESSIONID

The stickysession

parameter, com-

bined with the

name of a cookie

supported by the

back ends, means

that requests origi-

nating with individ-

ual users are always

sent to the same

back-end server.

This kind of

 limited distribution

ensures the persis-

tence of the re-

quests, but it does

interfere with the

actual task of load balancing.

To forward information to the back-

end servers in a targeted way, or to influ-

ence communications with the the back

end, the proxy module also supports

custom environmental variables and

http headers, which you can use to re-

strict the connections to the back end

or to advertise the use of SSL:

SetEnv proxy-nokeepalive 1

...

RequestHeader

set Front-End-Https "On"

A number of standard variables and

headers, such as proxy-nokeepalive,

proxy-sendcl, X-Forwarded-For, or X-

Forwarded-Server, saves typing and

makes life easier for administrators.

Other modules support caching or fil-

tering of content generated by the back

ends. In addition to improving perfor-

mance, caching also reduces the overall

traffic volume and generally offloads

some of the work from the back-end

servers. Listing 2 enables a simple, file-

based cache, including compression, for

the whole URL space /. (Just to demon-

strate how the exclusion feature works,

the whole URL space below /users has

been excluded.)

If you loaded the status module (mod_

status) when you launched the server,

the proxy module also provides a simple

but practical web interface (Figure 2).

The simple configuration involves as-

signing a handler:

<Location "/.balancer-manager">

 SetHandler balancer-manager

</Location>

...

ProxyPass /.balancer-manager !

However, it is important to take access

control into consideration and to exclude

[1] Hypertext transfer protocol 1.1:

http:// www. w3. org/ Protocols/

 rfc2616/ rfc2616. html

[2] Apache documentation, httpd 2.2:

http:// httpd. apache. org/ docs/ 2. 2/ en/

[3] Apache Software Foundation:

http:// www. apache. org/

INFO

Erik Abele has worked for many

years as a freelance IT consultant.

His international projects cover a full

range of architectures and large

web farm operations. Erik is a long-

standing member of the Apache

Software Foundation, where he

takes an active part in the http

Server and HttpComponents proj-

ects. You can contact Erik via his

websites: http:// www. eatc. de/ or

http:// www. codefaktor. de/.

T
H

E
 A

U
T

H
O

R

Module Function

mod_proxy Generic proxy module

mod_proxy_balancer Balancer functions for the proxy module

mod_proxy_http Http support for the proxy module

mod_cache Generic caching module

mod_disk_cache File-based cache for the caching module

mod_deflate Content compression module

mod_rewrite Module for parsing and processing URLs

mod_headers Module for parsing and processing http headers

Table 1: Required Modules

Apache Load Balancing

36 ISSUE 94 SEPTEMBER 2008

processing individual URLs within the load balancer, which is

achieved by means of a negative ProxyPass command. If you

use the Apache rewrite module (mod_rewrite), you can define

a separate rule to handle this case.

Management is restricted to viewing the status of all config-

ured balancers, disabling individual pool members, or modi-

fying some basic settings, but it is extremely useful if you en-

counter a problem, or if you wish to monitor multiple load

balancers.

Version 2.2 of the Apache http server offers a trouble-free,

 efficient, elegant, and scalable approach to load balancing in

an http environment. Availability, a short learning curve, and

nearly infinite flexibility all speak in favor of Apache. All told,

the Apache load balancing system is a very sensible alterna-

tive to popular commercial or open source alternatives. p

Name Explanation

status Balancer member status

loadfactor Normalized balancer member weighting

lbset The cluster set assigned to the balancer

member

lbmethod The request distribution method used by

the balancer on the basis of either the

number of requests (byrequests) or the

traffic volume (bytraffic)

min Minimum number of permanent

 back-end connections

max Maximum number of permanent

 back-end connections

maxattempts Maximum number of retries before

 denying a request

stickysession Name of a persistent cookie used by the

back-end server

Table 2: Common Balancer Parameters

with the Apress
SUMMER ’08 HOTLIST

Check
www.apress.com/promo/hotlist

regularly for special sales
and promotions!

For more information about Apress titles,

please visit www.apress.com

Don’t want to wait for the printed book?

Order the eBook now at

http://eBookshop.apress.com!

