
f you bought a new computer re-

cently, or if you are wading through

advertising material because you

plan to buy a computer soon, you will

be familiar with terms such as “Dual

Core” and “Quad Core.” A whole new

crop of consumer computers includes

two- or even four-core CPUs, taking the

humble PC into what used to be the do-

main of high-end servers and worksta-

tions. But just because you have a multi-

processor system doesn’t mean all the

processors are working hard.

In reality, often only one processor is

busy. Figure 1 shows the top program

output for Xaos, a fractal calculation pro-

gram. The program seems to be using

100 percent of the CPU. But appearances

can be deceptive: The computer’s actual

load is just 60 percent.

Pressing the 1 button lists the CPUs

separately. In this mode (Figure 2), you

can easily see the load on the individual

cores: One CPU is working hard (90 per-

cent load), while the other is twiddling

its thumbs (0.3 percent load).

Linux introduced support for multiple

processor systems many moons ago, and

the distributors now install the multiple

CPU–capable SMP kernel by default.

Linux, therefore, has what it takes to

 leverage the power of multiple cores.

But what about the software?

A program running on the system

must be aware of the multiple processor

architecture in order to realize the per-

formance benefits. OpenMP is an API

specification for “… multi-threaded,

shared memory parallelization” [1]. The

OpenMP specification defines a set of

OpenMP brings the power of multiprocessing to your C, C++, and

Fortran programs. BY WOLFGANG DAUTERMANN

OpenMP

64 ISSUE 94 SEPTEMBER 2008

SMP: Symmetric multi-processor system.

All of the machine’s CPUs can access the

shared main memory – in contrast to clus-

ter systems, in which separate machines

exchange data over the wire. OpenMP is

suitable for parallel programming on SMP

systems.

Thread: One popular definition of thread

is a “lightweight process.” A Unix process

has a separate memory area and various

resources are assigned to it – such as envi-

ronmental variables, network connec-

tions, or device access. A thread shares

memory and certain other resources with

other threads in a process. This reduces

the management overhead compared

with processes, and facilitates switching

between threads. Pressing Shift+H in the

top tool enables and disables the thread

display.

GLOSSARY

compiler directives, run-time library

 routines, and environment variables for

supporting multi-processor environ-

ments.

C/C++, and Fortran programmers can

use OpenMP to create new multi-proces-

sor-ready programs and to convert exist-

ing programs to run efficiently in multi-

processor environments.

A computer will work its way sequen-

tially – that is, one instruction after an-

other – through programs written in C/

C++ or some other programming lan-

guage. Of course, this technique will

only keep one processor core busy. Par-

allelization lets you make more efficient

use of a multi-processor system.

The OpenMP programming interface,

which has been under constant develop-

ment by various hardware and compiler

manufacturers since 1997, provides a

very simple and portable option for par-

allelizing programs written in C/ C++

and Fortran.

OpenMP can boost the performance of

a program significantly, but only if the

CPU really has to work hard – and if the

task lends itself to parallelization. Such

is often the case when working with

computationally intensive programs.

The OpenMP API supplies programmers

with a simple option for effectively par-

allelizing their existing serial programs

through the specification of a couple of

additional compiler directives, which

would look something like the following

code snippet:

#pragma omp

name_of_directive [clauses]

Compilers that don’t support OpenMP,

such as older versions of GCC before

version 4.2, will just ignore the compiler

directives, meaning that the source code

can still be complied as serial code:

$ gcc -Wall test.c

test.c: In function 'main':

test.c:12: warning: ignoring

#pragma omp parallel

OpenMP-specific code can also be com-

piled conditionally, with the #ifdef direc-

tive: OpenMP defines the _OPENMP

macro for this purpose.

An OpenMP program launches nor-

mally as a serial program with one

thread. One instruction arrives after an-

other. The first OpenMP statement I will

introduce creates multiple threads:

Variant 1: Parallel Sections

... /* one thread */

#pragma omp parallel /* many

threads */

{

#pragma omp sections

#pragma omp section

... /* Program section A running

parallel to B and C */

#pragma omp section

... /* Program section B running

parallel to A and C */

#pragma omp section

... /* Program section C running

parallel to A and B */

}

... /* one thread */

Variant 2: Parallel Loops

... /* a thread */

#pragma omp parallel [clauses ...]

#pragma omp for [clauses ...]

for (i=0;i<N;i++) {

 a[i]= i*i; /* parallelized */

 }

... /* one thread */

Listing 1: Parallel Sections and Loops

01 a = 0 ; b = 0 ;

02 #pragma omp parallel for

private(i) shared(x, y, n)

reduction(+:a, b)

03 for (i=0; i<n; i++) {

04 a = a + x[i] ;

05 b = b + y[i] ;

06 }

Listing 2: reduction()

OpenMP

65ISSUE 94SEPTEMBER 2008

... one Thread

#pragma omp parallel

{ ... many threads }

... one thread

Figure 3 shows how the program is dis-

tributed over multiple threads and then

reunited to a single thread.

Now you have created multiple threads,

but at the moment, they are all doing

the same thing. The idea is that the

threads should each handle their share

of the workload at the same time. The

programming language C has two

 approaches to this problem. Fortran, a

programming language that is popular in

scientific research, has a third approach:

“parallel work sharing.”

The first variant, parallel sections,

runs program sections (blocks of pro-

gram code that are not interdependent)

that support parallel execution, parallel

to one another.

So that this can happen, #pragma omp

parallel defines multiple threads. This

means that you can run multiple, inde-

pendent program blocks in individual

threads with no restrictions on the num-

ber of parallel sections (Listing 1, Variant

1: Parallel Sections). Also, you can com-

bine the two compiler directives, parallel

and sections, to form a single directive,

as in #pragma omp parallel sections.

The second variant, parallel for()

loops, parallelizes for loops, which is

 especially useful in the case of compu-

tationally intensive mathematical pro-

grams (Listing 1, Variant 2: Parallel

Loops).

Figure 4 shows how this works. Again

you can combine #pragma omp parallel

and #pragma omp for to #pragma omp

parallel for.

In shared memory programming multi-

ple CPUs can access the same variables.

This makes the program more efficient

and saves copying. In some cases, each

thread needs its own copy of the vari-

ables – such as the loop variables in par-

allel for() loops.

Clauses specified in

OpenMP directives (see

the descriptions Table 1)

define the properties of

these variables. You can

append clauses to the

OpenMP #pragma, for

example:

#pragma omp

parallel

for shared(x, y)

private(z)

Errors in shared()/

private() variable decla-

rations are some of the most common

causes of errors in parallelized program-

ming.

Now you now know how to create

threads and distribute the workload over

multiple threads. However, how can you

get all the threads to work on a collated

result – for example, to total the values

in an array? reduction() (Listing 2) han-

dles this.

The compiler creates a local copy of

each variable in reduction() and initial-

izes it independently of the operator

(e.g., 0 for “+”, 1 for “*”). If, say, three

Clause Meaning

shared(variable_list) Only one version of the variable exists, and all parallel program

sections access it. All threads have read and write access. If a

thread changes a variable, this also affects the other threads.

Default: All variables are shared() except the loop variables in

#pragma omp for.

private(variable_list) Each thread has a private, non initialized copy of the variable.

Default: Only loop variables are private.

default(shared|private|none) Defines the default behavior of the variables: none means that

you must explicitly declare each variable as shared() or private().

firstprivate(variable_list) Just like private(); however, in this case, all copies are initialized

with the value of the variable before the parallel loop/ region.

lastprivate(variable_list) The variable is assigned the value from the last thread to change

the variable in sequential processing after the parallel loop/ region

has been completed.

Table 1: Clauses

OpenMP

66 ISSUE 94 SEPTEMBER 2008

01 #ifdef _OPENMP

02 #include <omp.h>

03 #endif

04 #include <stdio.h>

05 int main() {

06 double a[1000000];

07 int i;

08 #pragma omp parallel for

09 for (i=0; i<1000000; i++)

a[i]=i;

10 double sum = 0;

11 #pragma omp parallel for

shared (sum) private (i)

12 for (i=0; i < 1000000;

i++) {

13 #pragma omp critical

(sum_total)

14 sum = sum + a[i];

15 }

16 printf("sum=%lf\n",sum);

17 }

Listing 3: Avoiding Race
Conditions

threads are each handling one third of

the loop, the master thread adds up the

subtotals at the end.

Debugging parallelized programs is an

art form in its own right. It is particularly

difficult to find errors that do not occur

in serial programs and do not occur reg-

ularly in parallel processing. This cate-

gory includes what are known as race

conditions: different results on repeated

runs of a program with multiple blocks

that are executed parallel to one another,

depending on which thread is fastest

each time. The code in Listing 3 starts by

filling an array in parallel and then goes

on to calculate the sum of these values

in parallel.

Without the OpenMP #pragma omp

critical (sum_total) statement in line 13,

the following race condition could occur:

s฀ 4HREAD฀�฀LOADS฀THE฀CURRENT฀VALUE฀OF฀
sum into a CPU register.

s฀ 4HREAD฀�฀LOADS฀THE฀CURRENT฀VALUE฀OF฀
sum into a CPU register.

s฀ 4HREAD฀�฀ADDS฀a[i+1] to the value in

the register.

s฀ 4HREAD฀�฀WRITES฀THE฀VALUE฀IN฀THE฀REGIS-
ter back to the sum variable.

s฀ 4HREAD฀�฀ADDS฀a[i] to the value in the

register.

s฀ 4HREAD฀�฀WRITES฀THE฀VALUE฀IN฀THE฀REGIS-
ter to the sum variable.

Because thread 2 overtakes thread 1

here, thus winning the “race,” a[i+1]

would not be added correctly. Although

thread 2 calculates the sum and stores it

in the sum variable, thread 1 overwrites

it with an incorrect value.

The #pragma omp critical statement

makes sure that this does not happen.

All threads execute the critical code, but

only one at any time. The example in

Listing 3 thus performs the addition cor-

rectly without parallel threads messing

up the results. For elementary operations

(e.g., i++) #pragma omp atomic will

atomically execute a command. Write

access to shared() variables also should

be protected by a #pragma omp critical

statement.

In some cases, it is necessary to synchro-

nize all the threads.The #pragma omp

barrier statement sets up a virtual hur-

dle: All the threads wait until the last

one reaches the barrier before processing

can continue. But think carefully before

you introduce an artificial barrier – caus-

ing threads to suspend processing is

going to affect the performance boost

that parallelizing the program gave you.

Threads that are waiting do not do any

work. Listing 4 shows an example in

which a barrier is unavoidable.

The Calculationfunction() line in this

listing calculates the second argument

with reference to the first one. The argu-

ments in this case could be arrays, and

the calculation function could be a com-

plex mathematical matrix operation.

Here, it is essential to use #pragma omp

barrier – the failure to do so would mean

some threads would start with the sec-

ond round of calculations before the

 values for the calculation in B become

available.

Some OpenMP constructs (such as

parallel, for, single) include an implicit

barrier that you can explicitly disable by

adding a nowait clause, as in #pragma

omp for nowait. Other synchronize

mechanisms include:

s฀ # pragma omp master {Code}: Code

that is only executed once and only by

the master thread.

s฀ # pragma omp single {Code}: Code

that is only executed once, but not

necessarily by the master thread

s฀ # pragma omp flush (Variables):

Cached variables written back to main

memory ensures a consistent view of

the memory.

These synchronization mechanisms will

help keep your code running smoothly

in multi-processor environments.

OpenMP has a couple of additional func-

tions, which are listed in Table 2. If you

want to use them, you need to include

the omp.h header file in C/ C++. To

make sure the program will build with-

OpenMP

67ISSUE 94SEPTEMBER 2008

i=9

i=10

i=11

i=12i=8

i=7

i=5

i=6

i=1

i=2

i=3

i=4

(implicit)

Barrier

#pragma omp for

/* end omp for */

#pragma omp parallel

/* end omp parallel */

01 #pragma omp parallel shared

(A, B, C)

02 {

03 Calculationfunction(A,B);

04 printf("B was calculated

from A\n");

05 #pragma omp barrier

06 Calculationfunction(B,C);

07 printf("C was calculated

from B\n");

08 }

Listing 4:
Unavoidable Barrier

01 /* helloworld.c (OpenMP

Version) */

02 #

03 #ifdef _OPENMP

04 #include <omp.h>

05 #endif

06 #include <stdio.h>

07 int main(void)

08 {

09 int i;

10 #pragma omp parallel for

11 for (i = 0; i < 4; ++i)

12 {

13 int id = omp_get_thread_

num();

14 printf("Hello, World from

thread %d\n", id);

15 if (id==0)

16 printf("There are %d

threads\n", omp_get_num_

threads());

17 }

18 return 0;

19 }

Listing 5: Hello, World

out OpenMP, it would make sense to add

the #ifdef _OPENMP line for conditional

compilation.

#ifdef _OPENMP

#include <omp.h>

threads = omp_get_num_threads();

#else

threads = 1

#endif

Locking functions allow a thread to lock

a resource, by reserving exclusive access

(omp_set_lock()) to it. Other threads can

then use a omp_test_lock() query to find

out whether the resource is locked. This

setup is useful if you want multiple

threads to write data to a file, but want

to restrict access to one thread at a time.

When you use locking functions, be

careful to avoid deadlocks.

A deadlock can occur if threads need

resources but lock each other out. For

example, if thread 1 successfully locks

up resource A and is now waiting to use

resource B, while thread 2 does exactly

the opposite. Both threads wait forever.

Some environmental variables control

the run-time behavior of OpenMP pro-

grams; the most important is OMP_

NUM_THREADS. It specifies how many

threads can operate in a parallel regions,

because too many threads will actually

slow down processing. The export OMP_

NUM_THREADS=1 tells a program to

run with just one thread in bash – just

like a normal serial program.

To use OpenMP in your own programs,

you need a computer with more than

one CPU, or a multi-core CPU and an

OpenMP-capable compiler. GNU compil-

ers later than version 4.2 support

OpenMP. Also, the Sun compiler for

Linux is free [2], and the Intel Compiler

is free for non-commercial use [3].

Listing 5 shows an OpenMP version

of the classic Hello World program.

To enable OpenMP, set -fopenmp when

launching GCC. Listing 8 shows the

OpenMP

68 ISSUE 94 SEPTEMBER 2008

Function Explanation

int omp_get_num_threads() Gets the number of threads.

int omp_get_thread_num() Gets the current thread number.

void omp_set_num_threads(int) Sets the number of threads to be used in future

 parallel regions.

Locking Functions

void omp_init_lock(omp_lock_t*) Initializes a lock.

void omp_set_lock(omp_lock_t*) Waits and then sets a lock; blocks if the lock is

 not available.

int omp_test_lock(omp_lock_t*) Waits and then sets a lock; does not block if the

 lock is not available.

void omp_unset_lock(omp_lock_t*) Removes a lock.

void omp_destroy_lock(omp_lock_t*) Destroys a lock.

Table 2: OpenMP Functions

$ gcc -Wall -fopenmp helloworld.c

$ export OMP_NUM_THREADS=4

[...]

$./a.out

Hello World from thread 3

Hello World from thread 0

Hello World from thread 1

Hello World from thread 2

There are 4 threads

Listing 8: Building Hello
World

01 $ icc -openmp helloworld.c

02 helloworld.c(8): (col. 1)

remark:

03 OpenMP DEFINED LOOP WAS

PARALLELIZED.

Listing 9: Notification

01 /* pi-openmp.c (OpenMP version)

*/

02 #

03 #include <stdio.h>

04 #define STEPCOUNTER 1000000000

05 int main(int argc, char

*argv[])

06 {

07 long i;

08 double pi = 0;

09 #pragma omp parallel for

reduction(+: pi)

10 for (i = 0; i < STEPCOUNTER;

i++) {

11 /* pi/4 = 1/1 - 1/3 + 1/5 -

1/7 + ...

12 To avoid the need to

continually change

13 the sign (s=1; in each

step s=s*-1),

14 we add two elements at

the same time. */

15 pi += 1.0/(i*4.0 + 1.0);

16 pi -= 1.0/(i*4.0 + 3.0);

17 }

18 pi = pi * 4.0;

19 printf("Pi = %lf\n", pi);

20 return 0;

21 }

Listing 7: Calculating Pi

$ gcc -Wall -fopenmp -o pi-openmp

pi-openmp.c

$ export OMP_NUM_THREADS=1 ; time

./pi-openmp

Pi = 3.141593

real 0m31.435s

user 0m31.430s

sys 0m0.004s

$ export OMP_NUM_THREADS=2 ; time

./pi-openmp

Pi = 3.141593

real 0m15.792s

user 0m31.414s

sys 0m0.012s

Listing 6: Parallel Pi

฀%

commands for building the program

along with the output.

If you are using the Sun compiler, the

compiler option is -xopenmp. With the

Intel compiler, the option is -openmp.

The Intel compiler even notifies the pro-

grammer if something has been parallel-

ized (Listing 9).

For an example of a performance boost

with OpenMP, I’ll look at a test that cal-

culates pi [4] with the use of Gregory

Leibniz’s formula (Listing 7 and Figure

5). This method is by no means the most

efficient for calculating pi; however, the

goal here is not to be efficient but to get

the CPUs to work hard.

Parallelizing the for() loop with

OpenMP does optimize performance

(Listing 6). The program runs twice as

fast with two CPUs than with one, in

that more or less the whole calculation

can be parallelized.

If you monitor the program with the

top tool, you will see that the two CPUs

really are working hard and that the

pi-openmp program really does use 200

percent CPU power.

This effect will not be quite as pro-

nounced for some problems, in which

case, you might need to resort to serial

execution for a large proportion of the

program. Of course, your two CPUs will

not be a big help in such a case, and the

performance boost will be less signifi-

cant. Amdahl’s Law [5] (see the

 “Amdahl’s Law” box for an explanation)

applies here. p

OpenMP

[1] OpenMP homepage:

http:// www. openmp. org

[2] Sun compiler: http:// developers. sun.

 com/ sunstudio/

[3] Intel compiler: http:// www. intel. com/

 cd/ software/ products/ asmo-na/ eng/

 compilers/ clin/

[4] Calculating pi (Wikipedia): http:// en.

 wikipedia. org/ wiki/ Computing_Pi

[5] Amdahl’s law (Wikipedia): http:// en.

 wikipedia. org/ wiki/ Amdahl's_law

INFO
“Speedup” describes the factor by which

a program can be accelerated with paral-

lelization. In an ideal case, program execu-

tion with N processors would take just 1/ N

of the time required by a serial program.

This ideal case is known as linear

speedup. In the real world, linear speedup

often is impossible to achieve because

some parts of a program do not particu-

larly lend themselves to parallelization.

Given a part of a program that supports

parallelization, P (thus, 1 – P is the non-

parallelizable part), and the number of

processors available, N, the maximum

speedup is

calculated by

the formula in

Figure 6.

If the serial

part of the program (1-P) is 1/ 4, the

speedup cannot be greater than 4 – no

matter how many processors you use.

Amdahl’s Law

฀%

