
f you bought a new computer re-

cently, or if you are wading through 

advertising material because you 

plan to buy a computer soon, you will 

be familiar with terms such as “Dual 

Core” and “Quad Core.” A whole new 

crop of consumer computers includes 

two- or even four-core CPUs, taking the 

humble PC into what used to be the do-

main of high-end servers and worksta-

tions. But just because you have a multi-

processor system doesn’t mean all the 

processors are working hard. 

In reality, often only one processor is 

busy. Figure 1 shows the top program 

output for Xaos, a fractal calculation pro-

gram. The program seems to be using 

100 percent of the CPU. But appearances 

can be deceptive: The computer’s actual 

load is just 60 percent. 

Pressing the 1 button lists the CPUs 

separately. In this mode (Figure 2), you 

can easily see the load on the individual 

cores: One CPU is working hard (90 per-

cent load), while the other is twiddling 

its thumbs (0.3 percent load).

Linux introduced support for multiple 

processor systems many moons ago, and 

the distributors now install the multiple 

CPU–capable SMP kernel by default. 

Linux, therefore, has what it takes to 

 leverage the power of multiple cores. 

But what about the software? 

A program running on the system 

must be aware of the multiple processor 

architecture in order to realize the per-

formance benefits. OpenMP is an API 

specification for “… multi-threaded, 

shared memory parallelization” [1]. The 

OpenMP specification defines a set of 
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SMP: Symmetric multi-processor system. 

All of the machine’s CPUs can access the 

shared main memory – in contrast to clus-

ter systems, in which separate machines 

exchange data over the wire. OpenMP is 

suitable for parallel programming on SMP 

systems.

Thread: One popular definition of thread 

is a “lightweight process.” A Unix process 

has a separate memory area and various 

resources are assigned to it – such as envi-

ronmental variables, network connec-

tions, or device access. A thread shares 

memory and certain other resources with 

other threads in a process. This reduces 

the management overhead compared 

with processes, and facilitates switching 

between threads. Pressing Shift+H in the 

top tool enables and disables the thread 

display.

GLOSSARY



compiler directives, run-time library 

 routines, and environment variables for 

supporting multi-processor environ-

ments. 

C/C++, and Fortran programmers can 

use OpenMP to create new multi-proces-

sor-ready programs and to convert exist-

ing programs to run efficiently in multi-

processor environments.

A computer will work its way sequen-

tially – that is, one instruction after an-

other – through programs written in C/ 

C++ or some other programming lan-

guage. Of course, this technique will 

only keep one processor core busy. Par-

allelization lets you make more efficient 

use of a multi-processor system.

The OpenMP programming interface, 

which has been under constant develop-

ment by various hardware and compiler 

manufacturers since 1997, provides a 

very simple and portable option for par-

allelizing programs written in C/ C++ 

and Fortran. 

OpenMP can boost the performance of 

a program significantly, but only if the 

CPU really has to work hard – and if the 

task lends itself to parallelization. Such 

is often the case when working with 

computationally intensive programs.

The OpenMP API supplies programmers 

with a simple option for effectively par-

allelizing their existing serial programs 

through the specification of a couple of 

additional compiler directives, which 

would look something like the following 

code snippet:

#pragma omp 

name_of_directive [clauses]

Compilers that don’t support OpenMP, 

such as older versions of GCC before 

version 4.2, will just ignore the compiler 

directives, meaning that the source code 

can still be complied as serial code:

$ gcc -Wall test.c

test.c: In function 'main':

test.c:12: warning: ignoring 

#pragma omp parallel

OpenMP-specific code can also be com-

piled conditionally, with the #ifdef direc-

tive: OpenMP defines the _OPENMP 

macro for this purpose.

An OpenMP program launches nor-

mally as a serial program with one 

thread. One instruction arrives after an-

other. The first OpenMP statement I will 

introduce creates multiple threads:

Variant 1: Parallel Sections

... /* one thread */

#pragma omp parallel /* many 

threads */

{

#pragma omp sections

#pragma omp section

...  /* Program section A running 

parallel to B and C */

#pragma omp section

...  /* Program section B running 

parallel to A and C */

#pragma omp section

... /*  Program section C running 

parallel to A and B */

}

... /* one thread */

Variant 2: Parallel Loops

... /* a thread */

#pragma omp parallel [clauses ...]

#pragma omp for [clauses ...]

for (i=0;i<N;i++) {

    a[i]= i*i; /* parallelized */

    }

... /* one thread */

Listing 1: Parallel Sections and Loops

01  a = 0 ; b = 0 ;

02  #pragma omp parallel for 

private(i) shared(x, y, n) 

reduction(+:a, b)

03  for (i=0; i<n; i++) {

04      a = a + x[i] ;

05      b = b + y[i] ;

06      }

Listing 2: reduction()
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... one Thread

#pragma omp parallel

{ ... many threads }

... one thread

Figure 3 shows how the program is dis-

tributed over multiple threads and then 

reunited to a single thread.

Now you have created multiple threads, 

but at the moment, they are all doing 

the same thing. The idea is that the 

threads should each handle their share 

of the workload at the same time. The 

programming language C has two 

 approaches to this problem. Fortran, a 

programming language that is popular in 

scientific research, has a third approach: 

“parallel work sharing.”

The first variant, parallel sections, 

runs program sections (blocks of pro-

gram code that are not interdependent) 

that support parallel execution, parallel 

to one another. 

So that this can happen, #pragma omp 

parallel defines multiple threads. This 

means that you can run multiple, inde-

pendent program blocks in individual 

threads with no restrictions on the num-

ber of parallel sections (Listing 1, Variant 

1: Parallel Sections). Also, you can com-

bine the two compiler directives, parallel 

and sections, to form a single directive, 

as in #pragma omp parallel sections.

The second variant, parallel for() 

loops, parallelizes for loops, which is 

 especially useful in the case of compu-

tationally intensive mathematical pro-

grams (Listing 1, Variant 2: Parallel 

Loops). 

Figure 4 shows how this works. Again 

you can combine #pragma omp parallel 

and #pragma omp for to #pragma omp 

parallel for.

In shared memory programming multi-

ple CPUs can access the same variables. 

This makes the program more efficient 

and saves copying. In some cases, each 

thread needs its own copy of the vari-

ables – such as the loop variables in par-

allel for() loops.

Clauses specified in 

OpenMP directives (see 

the descriptions Table 1) 

define the properties of 

these variables. You can 

append clauses to the 

OpenMP #pragma, for 

example:

#pragma omp 

parallel

for shared(x, y) 

private(z)

Errors in shared()/ 

private() variable decla-

rations are some of the most common 

causes of errors in parallelized program-

ming.

Now you now know how to create 

threads and distribute the workload over 

multiple threads. However, how can you 

get all the threads to work on a collated 

result – for example, to total the values 

in an array? reduction() (Listing 2) han-

dles this.

The compiler creates a local copy of 

each variable in reduction() and initial-

izes it independently of the operator 

(e.g., 0 for “+”, 1 for “*”). If, say, three 

Clause Meaning

shared(variable_list)  Only one version of the variable exists, and all parallel program 

sections access it. All threads have read and write access. If a 

thread changes a variable, this also affects the other threads. 

Default: All variables are shared() except the loop variables in 

#pragma omp for.

private(variable_list)  Each thread has a private, non initialized copy of the variable. 

Default: Only loop variables are private.

default(shared|private|none)  Defines the default behavior of the variables: none means that 

you must explicitly declare each variable  as shared() or private().

firstprivate(variable_list)  Just like private(); however, in this case, all copies are initialized 

with the value of the variable before the parallel loop/ region.

lastprivate(variable_list)  The variable is assigned the value from the last thread to change 

the variable in sequential processing after the parallel loop/ region 

has been completed.

Table 1: Clauses
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01  #ifdef _OPENMP

02  #include <omp.h>

03  #endif

04  #include <stdio.h>

05  int main() {

06      double a[1000000];

07      int i;

08      #pragma omp parallel for

09      for (i=0; i<1000000; i++) 

a[i]=i;

10      double sum = 0;

11      #pragma omp parallel for 

shared (sum) private (i)

12      for ( i=0; i < 1000000; 

i++) {

13          #pragma omp critical 

(sum_total)

14          sum = sum + a[i];

15      }

16      printf("sum=%lf\n",sum);

17  }

Listing 3: Avoiding Race 
Conditions



threads are each handling one third of 

the loop, the master thread adds up the 

subtotals at the end.

Debugging parallelized programs is an 

art form in its own right. It is particularly 

difficult to find errors that do not occur 

in serial programs and do not occur reg-

ularly in parallel processing. This cate-

gory includes what are known as race 

conditions: different results on repeated 

runs of a program with multiple blocks 

that are executed parallel to one another, 

depending on which thread is fastest 

each time. The code in Listing 3 starts by 

filling an array in parallel and then goes 

on to calculate the sum of these values 

in parallel.

Without the OpenMP #pragma omp 

critical (sum_total) statement in line 13, 

the following race condition could occur:

s฀ 4HREAD฀�฀LOADS฀THE฀CURRENT฀VALUE฀OF฀
sum into a CPU register.

s฀ 4HREAD฀�฀LOADS฀THE฀CURRENT฀VALUE฀OF฀
sum into a CPU register.

s฀ 4HREAD฀�฀ADDS฀a[i+1] to the value in 

the register.

s฀ 4HREAD฀�฀WRITES฀THE฀VALUE฀IN฀THE฀REGIS-
ter back to the sum variable.

s฀ 4HREAD฀�฀ADDS฀a[i] to the value in the 

register.

s฀ 4HREAD฀�฀WRITES฀THE฀VALUE฀IN฀THE฀REGIS-
ter to the sum variable.

Because thread 2 overtakes thread 1 

here, thus winning the “race,” a[i+1] 

would not be added correctly. Although 

thread 2 calculates the sum and stores it 

in the sum variable, thread 1 overwrites 

it with an incorrect value.

The #pragma omp critical statement 

makes sure that this does not happen. 

All threads execute the critical code, but 

only one at any time. The example in 

Listing 3 thus performs the addition cor-

rectly without parallel threads messing 

up the results. For elementary operations 

(e.g., i++)  #pragma omp atomic will 

atomically execute a command. Write 

access to shared() variables also should 

be protected by a #pragma omp critical 

statement.

In some cases, it is necessary to synchro-

nize all the threads.The  #pragma omp 

barrier statement sets up a virtual hur-

dle: All the threads wait until the last 

one reaches the barrier before processing 

can continue. But think carefully before 

you introduce an artificial barrier – caus-

ing threads to suspend processing is 

going to affect the performance boost 

that parallelizing the program gave you. 

Threads that are waiting do not do any 

work. Listing 4 shows an example in 

which a barrier is unavoidable.

The Calculationfunction() line in this 

listing calculates the second argument 

with reference to the first one. The argu-

ments in this case could be arrays, and 

the calculation function could be a com-

plex mathematical matrix operation. 

Here, it is essential to use #pragma omp 

barrier – the failure to do so would mean 

some threads would start with the sec-

ond round of calculations before the 

 values for the calculation in B become 

available.

Some OpenMP constructs (such as 

parallel, for, single) include an implicit 

barrier that you can explicitly disable by 

adding a nowait clause, as in #pragma 

omp for nowait. Other synchronize 

mechanisms include:

s฀ # pragma omp master {Code}: Code 

that is only executed once and only by 

the master thread.

s฀ # pragma omp single {Code}: Code 

that is only executed once, but not 

necessarily by the master thread

s฀ # pragma omp flush (Variables): 

Cached variables written back to main 

memory ensures a consistent view of 

the memory.

These synchronization mechanisms will 

help keep your code running smoothly 

in multi-processor environments.

OpenMP has a couple of additional func-

tions, which are listed in Table 2. If you 

want to use them, you need to include 

the omp.h header file in C/ C++. To 

make sure the program will build with-
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i=9

i=10

i=11

i=12i=8

i=7

i=5

i=6

i=1

i=2

i=3

i=4

(implicit)

Barrier

#pragma omp for

/* end omp for */

#pragma omp parallel

/* end omp parallel */

01  #pragma omp parallel shared 

(A, B, C)

02  {

03    Calculationfunction(A,B);

04    printf("B was calculated 

from A\n");

05  #pragma omp barrier

06    Calculationfunction(B,C);

07    printf("C was calculated 

from B\n");

08  }

Listing 4:  
Unavoidable Barrier

01  /* helloworld.c (OpenMP 

Version) */

02  #

03  #ifdef _OPENMP

04  #include <omp.h>

05  #endif

06  #include <stdio.h>

07  int main(void)

08  {

09    int i;

10  #pragma omp parallel for

11    for (i = 0; i < 4; ++i)

12    {

13      int id = omp_get_thread_

num();

14      printf("Hello, World from 

thread %d\n", id);

15      if (id==0)

16        printf("There are %d 

threads\n", omp_get_num_

threads());

17    }

18    return 0;

19  }

Listing 5: Hello, World



out OpenMP, it would make sense to add 

the #ifdef _OPENMP line for conditional 

compilation.

#ifdef _OPENMP

#include <omp.h>

threads = omp_get_num_threads();

#else

threads = 1

#endif

Locking functions allow a thread to lock 

a resource, by reserving exclusive access 

(omp_set_lock()) to it. Other threads can 

then use a omp_test_lock() query to find 

out whether the resource is locked. This 

setup is useful if you want multiple 

threads to write data to a file, but want 

to restrict access to one thread at a time. 

When you use locking functions, be 

careful to avoid deadlocks.

A deadlock can occur if threads need 

resources but lock each other out. For 

example, if thread 1 successfully locks 

up resource A and is now waiting to use 

resource B, while thread 2 does exactly 

the opposite. Both threads wait forever.

Some environmental variables control 

the run-time behavior of OpenMP pro-

grams; the most important is OMP_

NUM_THREADS. It specifies how many 

threads can operate in a parallel regions, 

because too many threads will actually 

slow down processing. The export OMP_

NUM_THREADS=1 tells a program to 

run with just one thread in bash – just 

like a normal serial program.

To use OpenMP in your own programs, 

you need a computer with more than 

one CPU, or a multi-core CPU and an 

OpenMP-capable compiler. GNU compil-

ers later than version 4.2 support 

OpenMP. Also, the Sun compiler for 

Linux is free [2], and the Intel Compiler 

is free for non-commercial use [3].

Listing 5 shows an OpenMP version 

of the classic Hello World program. 

To enable OpenMP, set -fopenmp when 

launching GCC. Listing 8 shows the 
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Function Explanation

int omp_get_num_threads()  Gets the number of threads.

int omp_get_thread_num() Gets the current thread number.

void omp_set_num_threads(int) Sets the number of threads to be used in future  

 parallel regions.

Locking Functions

void omp_init_lock(omp_lock_t*) Initializes a lock.

void omp_set_lock(omp_lock_t*) Waits and then sets a lock; blocks if the lock is  

 not available.

int omp_test_lock(omp_lock_t*) Waits and then sets a lock; does not block if the  

 lock is not available.

void omp_unset_lock(omp_lock_t*) Removes a lock.

void omp_destroy_lock(omp_lock_t*) Destroys a lock.

Table 2: OpenMP Functions

$ gcc -Wall -fopenmp helloworld.c

$ export OMP_NUM_THREADS=4

[...]

$ ./a.out

Hello World from thread 3

Hello World from thread 0

Hello World from thread 1

Hello World from thread 2

There are 4 threads

Listing 8: Building Hello 
World

01  $ icc -openmp helloworld.c

02  helloworld.c(8): (col. 1) 

remark:

03  OpenMP DEFINED LOOP WAS 

PARALLELIZED.

Listing 9: Notification

01  /* pi-openmp.c (OpenMP version) 

*/

02  #

03  #include <stdio.h>

04  #define STEPCOUNTER 1000000000

05  int main(int argc, char 

*argv[])

06    {

07    long i;

08    double pi = 0;

09    #pragma omp parallel for 

reduction(+: pi)

10    for (i = 0; i < STEPCOUNTER; 

i++) {

11      /* pi/4 = 1/1 - 1/3 + 1/5 - 

1/7 + ...

12         To avoid the need to 

continually change

13         the sign (s=1; in each 

step s=s*-1),

14         we add two elements at 

the same time. */

15         pi += 1.0/(i*4.0 + 1.0);

16         pi -= 1.0/(i*4.0 + 3.0);

17    }

18    pi = pi * 4.0;

19    printf("Pi = %lf\n", pi);

20    return 0;

21    }

Listing 7: Calculating Pi

$ gcc -Wall -fopenmp -o pi-openmp 

pi-openmp.c

$ export OMP_NUM_THREADS=1 ; time 

./pi-openmp

Pi = 3.141593

real    0m31.435s

user    0m31.430s

sys     0m0.004s

$ export OMP_NUM_THREADS=2 ; time 

./pi-openmp

Pi = 3.141593

real    0m15.792s

user    0m31.414s

sys     0m0.012s

Listing 6: Parallel Pi

฀%



commands for building the program 

along with the output.

If you are using the Sun compiler, the 

compiler option is -xopenmp. With the 

Intel compiler, the option is -openmp. 

The Intel compiler even notifies the pro-

grammer if something has been parallel-

ized (Listing 9).

For an example of a performance boost 

with OpenMP, I’ll look at a test that cal-

culates pi [4] with the use of Gregory 

Leibniz’s formula (Listing 7 and Figure 

5). This method is by no means the most 

efficient for calculating pi; however, the 

goal here is not to be efficient but to get 

the CPUs to work hard.

Parallelizing the for() loop with 

OpenMP does optimize performance 

(Listing 6). The program runs twice as 

fast with two CPUs than with one, in 

that more or less the whole calculation 

can be parallelized. 

If you monitor the program with the 

top tool, you will see that the two CPUs 

really are working hard and that the  

pi-openmp program really does use 200 

percent CPU power.

This effect will not be quite as pro-

nounced for some problems, in which 

case, you might need to resort to serial 

execution for a large proportion of the 

program. Of course, your two CPUs will 

not be a big help in such a case, and the 

performance boost will be less signifi-

cant. Amdahl’s Law [5] (see the 

 “Amdahl’s Law” box for an explanation)  

applies here.  p
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INFO
“Speedup” describes  the factor by which 

a program can be accelerated with paral-

lelization. In an ideal case, program execu-

tion with N processors would take just 1/ N 

of the time required by a serial program. 

This ideal case is known as linear 

speedup. In the real world, linear speedup 

often is impossible to achieve because 

some parts of a program do not particu-

larly lend themselves to parallelization.

Given a part of a program that supports 

parallelization, P (thus, 1 – P is the non-

parallelizable part), and the number of 

processors available, N, the maximum 

speedup is 

calculated by 

the formula in 

Figure 6.

If the serial 

part of the program (1-P) is 1/ 4, the 

speedup cannot be greater than 4 – no 

matter how many processors you use.

Amdahl’s Law
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