
fter a plane crash, a crash inves-

tigation begins. Investigations

reveal that most airplane

crashes are due either to human error

or to some new confluence of circum-

stances that was never anticipated. Con-

sequently, airline travel is one of the saf-

est forms of travel per passenger mile.

Software is another matter. Unlike a

plane crash, when a software crash

 occurs, a typical response is simply to

address the immediate problem with a

source code patch, which does nothing

to address the underlying problems.

Thus, we are in a constant state of only

treating the symptoms but never the

 underlying problems.

Because these underlying problems

are never corrected, we keep seeing the

same software flaws over and over (tem-

porary file creation, buffer overflows,

stack overflows, etc.).

This month, I’ll investigate the Debian

OpenSSL disaster in an effort to find any

root problems.

In a nutshell, the problem occurred

when a Debian package maintainer for

OpenSSL ran Valgrind, a code analysis

tool, against OpenSSL and found several

uses of uninitialized memory. The use of

uninitialized memory is potentially dan-

gerous because you have no idea what

could be in it – all 0’s, all 1’s, or an at-

tacker’s injected code, just to name a

few possibilities.

The maintainer then went online to

the openssl-dev mailing list and asked

about the following code:

 MD_Update(&m,buf,j);

Several replies later, the developer de-

cided it was safe to remove the offending

code from Debian’s OpenSSL package.

These changes were committed to De-

bian, and life went on as usual.

The code in question occurs twice:

once in ssleay_rand_bytes() and once

in ssleay_rand_add(). Although the code

is identical, it serves two very different

functions. In ssleay_rand_bytes(), the

code simply returns random data from

memory into a buffer. However, in the

function ssleay_rand_add(), it tries to

be clever by adding some uninitialized

memory to the entropy pool. In the best

case, it adds to entropy, and in the worst

case, it doesn’t hurt anything.

This buffer is used as the primary

source of entropy for any applications

using OpenSSL (unless they use a cus-

tom PRNG source). By commenting it

out entirely, the developer removed vir-

tually all the randomness used during

key creation by most applications. The

only remaining “random” data used dur-

ing key creation was the process ID, re-

ducing the key space from 2^(large num-

ber, such as 128 or 1024) to 2^16 (or

less, in some cases). Oops.

Several things went wrong, and like

most disasters, everything would have

been fine if the chain of events had been

broken at any point. Instead, every De-

bian administrator had to patch every

Find out what we can learn from the Debian OpenSSL disaster. BY KURT SEIFRIED

Security Lessons

70 ISSUE 93 AUGUST 2008

single box and re-generate every encryp-

tion key that was created in the past two

years.

One of the immediate issues was code

that did something unnecessary in a po-

tentially dangerous manner: Adding un-

initialized memory to true randomness

doesn’t gain much and makes the code

look like it might be doing something

else entirely.

Nor was the code well documented.

For example, the following comment

might be appropriate:

 /* This is critical code

* that reads from a random

* pool of data,

* pretty much all the

* critical randomness used

* in OpenSSL

* comes from here, if you

* monkey with it you may

* break OpenSSL

* and any applications that

* rely upon it entirely

*/

This is why military equipment has nice

big warnings like “this side to enemy.”

Chances are, if this code were easier

to understand, the developer wouldn’t

have needed to go to the openssl-dev

mailing list for help. This leads nicely

into the second issue: unclear communi-

cations.

When dealing with security-related

code or security-related issues, it is criti-

cal to communicate with the right people

or forum. Otherwise, you might receive

what looks like an authoritative answer

but is in fact incorrect – perhaps because

the question was misunderstood or be-

cause the answer is simply wrong. In

this case, it looks like pretty much every-

thing that could go wrong did go wrong.

The OpenSSL team claims that the

question was asked on the wrong mail-

ing list, whereas other people claim that

the supposedly correct mailing list isn’t

advertised.

Additionally, the question was some-

what unclear: The example code snippet

doesn’t give full context, and because of

the nature of the code, this might have

led to a misunderstanding of exactly

what was going on.

Prefacing your email with something

like, “If you know a better person or

forum to ask, please let me know,” is

probably more effective than, “Is this the

right place to ask,” and certainly better

then blindly firing off an email and hop-

ing for an authoritative answer.

Additionally, a reporter can check the

CVS (or subversion, or git) check-in

messages to find out who checks in lots

of changes in the affected code to learn

who is probably responsible for the code

in question.

As you can see, tracking down the

right person can be quite a chore, so

clearly documenting how to contact –

and who to contact – for various issues

will go a long way toward preventing

problems with your software.

Because Debian packagers maintain

their own code repositories, the source

code change wasn’t noticed by anyone

outside of the Debian project, but it still

got widespread distribution. If the

source code patch had officially been

sent upstream to OpenSSL by the Debian

Project, it would have probably raised

red flags and been removed. This leads

to a situation in which even if the up-

stream project continues to update and

maintain software, a simple patch main-

tained by Debian could introduce a sub-

tle – or in this case, a significant – flaw.

The solution to this problem, sending all

patches upstream for inclusion, is not

simple. Another possibility is officially

to run all patches upstream for review.

Finally, I will address the most difficult

issue. In the airplane industry, materials,

designs, and often entire components

(such as wing assemblies) are tested to

the point of destruction to see just how

much abuse they can take before failing.

To my knowledge, a testing framework

for OpenSSL that generates a statistically

significant number of keys – for exam-

ple, several hundred thousand or million

– and then analyzes them to check for

randomness doesn’t officially exist.

Additionally, even if such a framework

existed, it would need to be applied reg-

ularly to new versions – and not just the

official upstream version, but to any ver-

sions that have modifications applied to

them by vendors.

Of course, this type of testing frame-

work should be applied to all products,

for example, a firewall-testing protocol

that applies a variety of rulesets – rang-

ing from simplistic to complex – and

then sends traffic to it that tries to evade

the rulesets.

Until such frameworks exist, it is al-

most certain that serious flaws will con-

tinue to crop up.

Unfortunately, it is much cheaper in the

short term simply to treat the most dam-

aging symptoms of bad software engi-

neering than it is to address the underly-

ing problems and causes. However, in

the long run, this leads to huge amounts

of time spent by end users applying

patches and updates and developers

needing to address the same problems

repeatedly.

The good news is that many of the

 solutions to these problems are not that

expensive, and most require little if any

technology to implement.

Simply commenting code, document-

ing communications channels, and ask-

ing questions clearly – with as much

context as possible – will go a long way.

Also, it’s important to remember that

open source isn’t just about access to

source code, but access to the very cul-

ture that writes the source code, which

means everyone has the chance to help

make it that much better. p

Kurt Seifried is an

Information Secu-

rity Consultant spe-

cializing in Linux

and networks since

1996. He is married

and has four cats

but no fish (because

the cats are more hungry than afraid

of water). He often wonders how it

is that technology works on a large

scale but often fails on a small scale.

T
H

E
 A

U
T

H
O

R

DSA-1571-1 openssl: http:// www.

 debian. org/ security/ 2008/ dsa-1571

Key rollover: http:// www. debian. org/

 security/ key-rollover/

SSLkeys: http:// wiki. debian. org/

 SSLkeys

OpenSSL bug report: http:// bugs.

 debian. org/ cgi-bin/ bugreport. cgi?

 bug=363516

INFO

Security Lessons

71ISSUE 93 AUGUST 2008

