
The standards for an impressive Internet presentation
have changed substantially since Tim Berners-Lee cre-
ated the first web pages. Internet sites increasingly re-

mind the surfer of interactive desktop applications rather than
printed material. AJAX is a technology based on JavaScript that
adds convenience, with pull-down menus, sortable tables, and
interactive input pages. The main improvement is the absence
of delays typically experienced while pages reloaded.

Long Way
Before rendering a website, the browser and web server go
through a number of steps (Figure 1):
• The browser sends a page request to a web server.
• The server processes the request and serves up the HTML

text and images. This might take a couple of seconds if the
load is heavy. The network transmission speed decides how
fast the content is delivered. The required time is still notice-
able on fast intranets, however.

• Finally, the browser reads the response and displays the
page. The same sequence is repeated for each image before
the browser can render the final version of the page.

All told, these three steps typically take several seconds. In case
of HTML pages without AJAX technology the steps are repeated
for even the tiniest of changes.

In contrast to rich client applications, this considerably
 affects the user experience: Menus that drop down without a
delay, point and click sorting in tables, or drag and drop are not
easily implemented because of time-consuming page reloads.
HTML pages that offer these kinds of features need to be auton-
omous, like local programs; that is, you should not need to rely
on a server connection.

Removing Time-Consuming Requests
To improve the user experience, more and more web applica-
tions are starting to process user input directly browser-side
and to do without time-consuming server requests.

Only two of the various techniques for browser-side data
 processing have achieved widespread success: JavaScript and
Flash. Both are available on more than 90 percent of all com-
puters. This means that web developers need not have any
qualms about using them.

Other solutions, with the exception of the relatively wide-
spread Java plugin, have been unable to achieve similar multi-

Books were the original model for website design.

Navigation was similar to flipping the pages. Thanks

to AJAX, many state‑of‑the‑art websites now behave

like desktop applications. BY CARSTEN ZERBST

Books were the original model for website design.

Building efficient websites with AJAX

BREEZY BROWSING

AJAX WorkshopPROGRAMMING

70 ISSUE 91 JUNE 2008

b
ro

ker, Foto
lia

platform success. Flash and JavaScript
adopt completely different approaches.

Flash
The proprietary Flash plugin executes bi-
nary Flash applications in the browser.
The plugin is embedded in the web page
very much like a bitmap image, except
that it offers the user an interactive inter-
face. The Flash plugin has excellent
graphics capabilities with virtually no re-
strictions on the developers’ creativity.
However, for lack of equivalent open
source alternatives, there is virtually no
alternative to the Adobe tools.

JavaScript
In contrast, JavaScript is not restricted
to isolated areas of the web page. The
 interpreter that is integrated with the
browser executes the program and con-
verts the whole page into a dynamically
modifiable interface. To do so, scripts
create or modify the HTML code on the
page, modify the cascading style sheet
(CSS) styles, or even draw graphics.

The scripts themselves comprise un-
compiled text. In contrast to Flash devel-
opment, programming in JavaScript does
not require any special tools. A simple
text editor is fine for a start.

Good Tools
As always, good tools make program-
ming easier. An editor with HTML, CSS,
and JavaScript support is useful. It
should also be able to handle source
code that mixes all three [1][2]. Chris
Pederick’s Firefox plugin Web Developer
[3] is the obvious choice for tracing and
debugging programs. It reveals bugs in
HTML, CSS, and JavaScript; investigates
cookies; and displays the dynamically

modified HTML code, not just the origi-
nal version delivered by the server.

Tables
An increasing number of applications,
such as order processing and enterprise

resource planning (ERP) systems use
web front ends: Parts lists or other list-
type overviews are the main fare.

One important feature is the user’s
ability to sort these lists. If the web front
end is based on static HTML, the server
has to regenerate the page and serve up
the modified version. Of course, client-
side JavaScript-based data sorting makes
for a smoother process.

Figure 2 gives an example of a direc-
tory listing implemented as an HTML
table. Clicking the table header sorts the
table by the current column. Figure 3
shows how to do this with JavaScript.
An HTML table comprises nested <tr>
and <td> elements, which can be ad-
dressed via DOM [4].

The script starts by dynamically re-
moving all the <tr> elements (i.e., the
rows in the table) from the page. The
rows only exist as an array in JavaScript.

PROGRAMMINGAJAX Workshop

71ISSUE 91JUNE 2008

01 <!DOCTYPE HTML PUBLIC "‑//W3C//DTD HTML 4.01 Transitional//EN">

02 <html>

03 <head>

04 <title>Sortable Table</title>

05 <meta http‑equiv="Content‑Type" content="text/html;
charset=UTF‑8">

06 <link href="tabelle.css" rel="stylesheet" type="text/css" />

07 <script type="text/javascript" src="lib/MochiKit/MochiKit.
js"></script>

08 <script type="text/javascript" src="sortierbareTabelle.
js"></script>

09 </head>

10 <body>

11 <TABLE id="sortierbareTabelle" class="datagrid">

12 <THEAD>

13 <TH>Rights</TH> <TH mochi:format="int">Size</
TH><TH mochi:format="gdate">Change</TH>

14 </THEAD>

15 <TBODY>

16 <TR>

17 <TD>‑rw‑r‑‑r‑‑</TD><TD>1</TD><TD>root</
TD><TD>root</TD><TD>551</TD><TD>27.01.07</TD><TD>group</TD>

18 </TR>

19 <TR>

20 ...

21 </TR>

22 </TBODY>

23 </TABLE>

24 </body>

25 </html>

Listing 1: Sortable Table

Figure 1: Pingpong: The exchange between browser and web server that occurs for each page

change without AJAX typically takes several seconds.

Requests Page

Processes
Request

Reads Server Reply,
Loads Frames
and Images

Processes
Request

Displays Complete Page

Time

Browser

Network

Server

0,1 - 120 s 0,1 - 1 s

0,5 - 240 s

Transmitting

0,1 - 120 s 0,1 - 1 s

The JavaScript function then sorts the
array on the requested column and
writes the new sorting order between
the empty <table> and </table> tags.
Finally, the script draws an arrow, a
Unicode arrow [5] character, before the
label of the column on which the table
is sorted.

Modular System
This method can be implemented with a
few hundred lines of code; however, it is
easier to re-sort to existing solutions. A
dozen or so popular JavaScript libraries
are on the Internet that include functions
for frequently needed tasks, such as sort-
ing tables, creating round corners in
HTML, and drawing tree graphs.

The advantages of libraries compared
with do-it-yourself solutions are in their
enormous function scope and guaran-
teed compatibility with popular brows-
ers. Although JavaScript conforms to the
ECMA standard [6], the implementations
in browsers on Linux, Mac OS X, and
Windows differ in some major aspects.
Most existing libraries abstract these dif-
ferences to make life a little easier for
developers.

Listing 1 shows the HTML code for a
sortable table based on the free Mochikit
[7] library. Besides the two includes in
line 6 that bind Mochikit, the HTML
source code is little different from a
static table. The table tag needs a unique
ID (sortable_table) as in the menu exam-
ple here. The Mochikit-specific attributes
mochi:format="int" and mochi:format=
"gdate" in the <th> tags help Mochikit
sort numeric and date columns correctly.

Dynamic Data
The previous example stores the table
content in the HTML source code; the
following example takes things one step

further. The applica-
tion picks up the table
content without re-
loading the page from
the server. Links, but-
tons, and menu items
let the user fill the
table with different
values. Also, it is pos-
sible to display search
results without page
reloads.

Figure 4 illustrates
the technology dis-

played here. The server delivers the data
in JavaScript Object Notation (JSON), a
text format that uses brackets and com-
mas as separators.

JSON
XML is a popular alternative to JSON.
JSON’s advantage is the lower overhead
compared with the unnecessarily ver-
bose XML. The JavaScript eval() func-
tion converts the JSON code to normal
JavaScript objects.

Listing 2 shows the HTML code. In-
stead of the table content, the code just
has a tbody element as a placeholder.
The JavaScript file referenced in the
head of the table, AjaxTabelle.js, replaces
the placeholder with new content with
values from the JSON file (Listing 3).

If the lists are longer, it is faster to load
just the first 25 entries. The user can
then click a link or button to load the
next 25. This approach reduces the wait
time for the user as well as the server
load.

Picture Perfect
The previous examples have been re-
stricted to simple
HTML elements
such as lists and
tables. Widgets
and functions
that HTML does
not provide na-
tively can be
programmed in
JavaScript in
combination
with cascading
style sheets.

Querying the
mouse position
allows the devel-
oper to imple-

ment tool tips and even drag and drop.
Most JavaScript libraries include imple-
mentations.

This does not exhaust the capabilities
of dynamic HTML, including graphics
that legacy HTML could only implement
by embedding bitmaps.

Figure 5 shows a tree structure drawn
by JavaScript. Client-side dynamic
graphics have a number of advantages
compared with bitmaps: The resolution
is not fixed and can thus be modified
to reflect the browser’s preset font size.

User input can be visualized without
server interaction, thus reducing the
load on the server. Normally, much of
a web server’s bandwidth is consumed
by serving up graphics.

HTML Extensions
Basically, there are two approaches to
using JavaScript to create graphics. The
greatest feature scope is offered by the
XML-based graphics languages SVG [8],
Canvas [9], and Vector Markup Lan-
guage (VML) [10]. They can be embed-
ded in HTML like normal graphics, but
also can add typical graphical elements –
such as lines, areas, or text at run time.
They can thus respond interactively to
user input like dynamic JavaScript-modi-
fied HTML.

Drawing programs such as Inkscape
[11] or Karbon [12] will help you create
a draft.

Unfortunately, multi-browser support
is not guaranteed: None of the popular
browsers support all three formats re-
ferred to here.

Firefox can handle SVG and Canvas,
Safari just Canvas, and Internet Explorer
just VML.

AJAX WorkshopPROGRAMMING

72 ISSUE 91  JUNE 2008

Figure 2: New order: Clicking the table header tells the client-

side JavaScript to sort the table on the requested column; there

is no need to delay this process by talking to the server.

Figure 3: JavaScript sorts tables by dynamically removing the rows

from the table, caching the results in an array, and reinserting the

data in the new order.

<table>
 <tr><td>Z</td>...</tr>
 <tr><td>A</td>...</tr>

 <tr><td>B</td>...</tr>
</table>

<tr><td>Z</td>...</tr>
<tr><td>A</td>...</tr>
....
<tr><td>B</td>...</tr>

Javascript List

<tr><td>A</td>...</tr>
<tr><td>B</td>...</tr>
....
<tr><td>Z</td>...</tr>

<table>
 <tr><td>A</td>...</tr>
 <tr><td>B</td>...</tr>

 <tr><td>Z</td>...</tr>
</table>

Sort List

Insert

Put Lines from
Page into List

<table>
</table>Extract Lines

Google JavaScript has two libraries for
SVG [13] or Canvas [14]; however, sup-
port on the Windows platform is not
guaranteed.

Tried and Trusted Tools
Many diagrams or graphs can be created
with JavaScript and the standard HTML
and CSS tools, such as the tree graph in
Figure 5.

The boxes are made up of freely posi-
tioned CSS div elements. If em is used
as a unit instead of px (pixel) for placing
and sizing, the box height, width, and
position are based on the size of the
letter “m.”

The whole graph will then scale to
reflect the text size without any effort on
the developer’s part.

Users can also easily scale the graphic
up and down in most browsers with the
mouse wheel.

Connecting Lines
Drawing the connecting lines is slightly
more difficult. Because JavaScript does
not support graphical elements such as

lines or circles, the trick here is to draw
the graphical elements pixel by pixel as
tiny div elements. Walter Zorn’s jsGraph-
ics abstracts this complex process, giving
developers basic shapes such as lines,
circles, and polygons.

The connect() function relies on these
to draw two boxes with lines. It ascer-
tains the box positions at run time to
allow the graphic to scale to the font
size.

The displayHierarchy() function then
redraws the connecting lines.

Lawrence Carvalhos’ TextResizeDetec-
tor [15] calls this function whenever the
user changes the font size. The result
is a loss-free, zoomable AJAX widget for
tree structures that cannot be imple-
mented using bitmaps.

Because it is entirely based on HTML
elements, there is no need for extensions
such as Canvas or VML that are not

PROGRAMMINGAJAX Workshop

73ISSUE 91JUNE 2008

01 �<!DOCTYPE HTML PUBLIC "‑//W3C//DTD HTML 4.01
Transitional//EN">

02 �<html>

03 � <head>

04 � <link href="tabelle.css" rel="stylesheet"
type="text/css" />

05 � <script type="text/javascript" src="lib/
MochiKit/MochiKit.js"></script>

06 � <script type="text/javascript"
src="AjaxTabelle.js"></script>

07 � </head>

08 � <body>

09 � Examples

10 � <hr>

11 � <h4>Ajax Table</h4>

12 � <p>

13 � <a href="top.json"
mochi:dataformat="json">Reload Table 1

14 � <a href="top2.json"
mochi:dataformat="json">Reload Table 2

15 � </p>

16 � <table id="sortable_table"
class="datagrid">

17 � <thead>

18 � <tr>

19 � <th mochi:sortcolumn="PID
int">PID</th>

20 � <th mochi:sortcolumn="USER
str">USER</th>

21 � [...]

22 � <th mochi:sortcolumn="COMMAND
str">COMMAND</th>

23 � </tr>

24 � </thead>

25 � <!‑‑ replaced by the JSON file content
‑‑>

26 � <tbody class="mochi‑template">

27 � <tr mochi:repeat="item domains">

28 � <td mochi:content="item.PID"></
td>

29 � <td mochi:content="item.
USER"></td>

30 � [...]

31 � <td mochi:content="item.
COMMAND"></td>

32 � </tr>

33 � </tbody>

34 � </table>

35 � </body>

36 �</html>

Listing 2: Dynamically Generated Table

Figure 4: Even more dynamic: If the JavaScript picks up JSON-formatted data from the

server, the data can be sorted and the table updated without reloading the page.

<html>
 <script src="ajaxTabelle.js">
 <table>
 <thead> </thead>
 <tr mochi:repeat="item
domains" />
 </table>
</table>

Javascript
References

JSON

Loads

<html>
 <script src="ajaxTabelle.js">
 <table>
 <thead> </thead>
 <tr>
 <td>1</td>
 <td>root</td>

 </tr>
 <tr>
 <td>170</
td><td>root</td>....
 </tr>
 <tr>
 <td>126</
td><td>root</td>....

Fills Table with
JSON-formatted Data

available for some browsers. At least the
box text is legible in a browser without
JavaScript and CSS support.

Pros and Cons
Many sites benefit from JavaScript and
AJAX with respect to usability. Short re-
sponse times and the ability to do with-
out page reloads are greeted enthusiasti-
cally by users. However, the use of AJAX
can cause issues that do not occur with
static pages. For example, users cannot
simply click forward and back buttons
to navigate.

Pages modified dynamically by Java
Script thwart user expectations. The
problem even affects the simple dynamic
menus referred to earlier. If users click to
pop up a submenu, the back button will
not take them to the previous page sta-
tus; rather, it opens the page visited pre-
viously.

This might not be a big issue with a
menu, but if the client-side script
changes the page substantially, making
it appear to be a new page from the
user’s viewpoint, confusion is likely.

The browser
cannot detect the
state changes that
occur on an AJAX
page because the
URL remains the
same. The client-
side JavaScript
logic makes the
changes without
reloading, which
is why bookmarks
are unable to cap-

ture the page status. If the website uses
AJAX-based navigation, bookmarks will
simply take the user to the front page.

The first thing to consider is whether
quick response, or a working history,
and the ability to bookmark subpages,
are more useful to the surfer. Although
the use of a client-side JavaScript that
pulls down menus without reloading
the page or that re-sorts tables is always
going to be an elegant solution, the us-
ability of a shop or catalog page with
hundreds of subpages would be seri-
ously affected when users lose the abil-
ity to navigate with forward and back
buttons.

Remedies
Workarounds have been found for the
history and bookmark problems. For ex-
ample, Google Maps provides an alterna-
tive URL containing the GET parameters
for the section of the map.

Users can’t bookmark the page loaded
in the browser. Instead, right-clicking
the link shown on the page adds a book-
mark.

Other workarounds use the HTML an-
chor that is normally used to store spe-
cific positions on a page in a URL. The
anchor is the part of the URL that fol-
lows the hash sign (#).

Just like the URL itself, the anchor
can be modified by means of JavaScript
without reloading the page. If the
browser fails to find an anchor tag for
the string that follows the hash, the dis-
play remains unchanged. The anchor is
thus perfect for caching status informa-
tion: The anchor part is the only part of
the URL that can be modified without
reloading the page.

The capabilities of JavaScript graphics
are fairly spartan compared with Flash:
HMTL and CSS can only draw squares
and text. Libraries such as jsGraphics
add further shapes, such as circles and
polygons. SVG graphics or Canvas, an
element of the future HTML 5 web stan-
dard, embedded in the web page add
more abilities. Both are unsuitable for
publicly accessible Internet sites because
they are not available across the board
for browsers. n

AJAX WorkshopPROGRAMMING

74 ISSUE 91  JUNE 2008

01 �{

02 � "columns": ["PID", "USER","PR","NI", "VIRT", "RES", "SHR", "S",
"CPU","MEM", "TIME", "COMMAND"],

03 � "rows": [

04 � ["6620","cz","15","0","166912","57344","40960",
"S","11.6","5.6", "0:02.40", "soffice.bin"],

05 � ["3701","root","15","0","241664","225280","17408",
"S","4","21.8", "4:23.50", "X"],

06 � ["4496","cz","15","0","63828","20480","15360", "R","2","2",
"0:16.02", "gnome‑panel"],

07 � ["4506","cz","15","0","70480","18432","10240",
"R","2","1.8", "0:04.14", "gnome‑terminal"],

08 �]

09 �}

Listing 3: JSON Data

Figure 5: Better than bitmaps: The JavaScript graph dynamically

reacts to font size changes while saving the bandwidth this would

normally require.

Package

A1 A2

B1 B1

[1]	� jEdit: http://​www.​jedit.​org

[2]	� NetBeans: http://​www.​netbeans.​org

[3]	� Web Developer Firefox plugin:
http://​chrispederick.​com/​work/​
web‑developer

[4]	� Document Object Model:
http://​www.​w3.​org/​DOM

[5]	� Unicode arrows: http://​www.​
alanwood.​net/​unicode/​arrows.​html

[6]	� ECMA standard:
http://​www.​ecma‑international.​org/​
publications/​standards/​Ecma‑262.​
htm

[7]	� MochiKit: http://​www.​mochikit.​com

[8]	� SVG:
http://​www.​w3.​org/​Graphics/​SVG

[9]	� HTML Canvas element: http://​www.​
w3.​org/​html/​wg/​html5/​#​the‑canvas

[10]	�VML: http://​www.​w3.​org/​TR/​1998/​
NOTE‑VML‑19980513

[11]	�Inkscape: http://​www.​inkscape.​org

[12]	�Karbon:
http://​www.​koffice.​org/​karbon

[13]	�SVG2VML:
http://​code.​google.​com/​p/​svg2vml

[14]	�ExplorerCanvas:
http://​excanvas.​sourceforge.​net

[15]	�TextResizeDetector: http://​www.​
alistapart.​com/​articles/​fontresizing

INFO

