
M
ainframes commonly are re-

garded as being reliable, but

also big, complicated, pricey,

and outmoded in today’s IT landscapes.

Here, the Hercules mainframe editor,

which emulates the CPU architecture,

can help. Even if Linux is running in a

production environment on a main-

frame, Hercules still can provide a useful

service for testing and development.

In this article, I will describe how to

set up and configure Hercules and its

virtual hardware, and then I will focus

on installing zLinux on Hercules. Finally,

I’ll take a quick look at z/ OS – the native

mainframe operating system – and its

freely available predecessor MVS.

Download and Installation
Hercules 3.04 does not support current

zLinux variants, which is why you

should download the current source

code for version 3.05 [1]. The RPM, also

available from the homepage, will install

but does not support network connec-

tions, making it unsuitable for the pur-

poses of this article.

In a directory of your choice (e.g.,

/usr/local/src), unpack the sources,

change to the /usr/local/src/hercules-3.05

directory, and enter configure as shown

in Listing 1. After doing so, don’t forget

to check config.log, paying particular at-

tention to whether Zlib support is avail-

able. If the zlib-devel package is not in-

stalled on SUSE, you will still be able to

build and use Hercules, but you will not

be able to use the typical Zlib com-

pressed virtual hard disks.

After completing the configuration

phase, follow the normal make and su -c

"make install" procedure. Now Hercules

is installed, but some manual finishing

work is necessary. The HTML-formatted

documentation is available in /usr/local/

share/hercules, with links to additional

resources on the Internet; if you run into

difficulty, try the mailing list.

If you will be using TCP/ IP network-

ing with a Hercules guest system, it is

important to configure the host system

correctly. First, you need to modify the

privileges for the /usr/local/bin/hercifc

script, which configures the Tun/ Tap

network device when Hercules starts up.

Just as for any direct device access, you

need root privileges for this. The --en-

able-setuid-hercifc configure option (see

Listing 1, line 9) sets the SUID bit, but

the installation script sets group owner-

ship for the file to root, making it impos-

sible to execute the script as a non-privi-

leged user. The following lines will set

the permissions correctly:

chgrp users U

/usr/local/bin/hercifc

chmod 4750 U

/usr/local/bin/hercifc

The following sections only apply to

openSUSE systems; some details will

vary for other operating systems. For the

network connection, Hercules uses the

Tun/ Tap device; on a normal system, the

Many enterprises still rely heavily on mainframes, which makes it all the more difficult to get your hands on

one and install Linux on it. The Hercules emulator gives you a full-fledged alternative.

BY BERNHARD BABLOK

Hercules mainframe emulator

BIG BOXES

Hercules Mainframe EmulatorKNOW-HOW

54 ISSUE 90 MAY 2008

K
irs

ty
 P

a
rg

e
te

r, F
o
to

lia

054-059_hercules.indd 54 12.03.2008 11:22:10 Uhr

device is owned by root:root and has per-

missions of 0600. Again, this rules out

access by normal users. However, chang-

ing the permissions manually will not do

you much good because the original sta-

tus is restored when you reboot.

Udev is used for device management

on today’s systems, which is why you

will need to modify the corresponding

Udev rule. On an openSUSE system,

the /etc/udev/rules.d/50-udev-default.

rules file controls this, and you must

add:

KERNEL=="tun", GROUP="users", U

NAME="net/%k",MODE="0660"

To give /dev/net/tun the right permis-

sions, type rm /dev/net/tun and mod-

probe tun. If the device still has incorrect

permissions after a reboot, don’t worry.

At system launch time, /etc/

init.d/boot.udev copies a num-

ber of devices from /lib/udev/

devices to /dev, so you will

need to delete the Tun device

in this directory or modify its

permissions:

chgrp users U

/lib/udev/devices/net/tun

chmod 660 U

/lib/udev/devices/net/tun

Network Preparation
The Tun/ Tap device supports a

point-to-point connection be-

tween the host and the guest,

which other virtualization so-

lutions call host-only network-

ing. If you want to grant the

guest system access to the

local network – or even the Internet –

you also will need to set up NAT. To do

so, first enable IP forwarding, either per-

manently in /etc/sysconfig/sysctl (IP_

FORWARD=yes) or manually:

echo "1" > U

/proc/sys/net/ipv4/ip_forward

Then use iptables to define two rules:

iptables -t nat -A POSTROUTING U

-o eth0 -j MASQUERADE

iptables -A FORWARD -i U

tun0 -j ACCEPT

This completes

preparation of the

host system. Next

comes creating and

configuring the

 virtual hardware.

Virtual
Hardware
Hercules supports a

whole bunch of vir-

tual hardware com-

ponents, but you

just need some hard

disks and a network

connection for

zLinux. Because

this is a high-end

server system,

video, audio, and

USB support are ir-

relevant. Although

Hercules supports emulated printers,

there are no Linux drivers for the old,

line-oriented 1403 printer (Figure 1).

However, this is not a major drawback;

you can print over the network to the

host’s CUPS server or to any other print

server available on the network.

The virtual hardware is defined in a

configuration file (Listing 2), which is

passed in to the emulator with the -f op-

tion when it’s launched. Hercules does

not impose any restrictions with respect

to the name and directory structure. De-

pending on your personal preferences,

you can store all your files in a single

 directory or organize them in subdirecto-

ries by file type.

Virtual hard disks are normal files, as

with any other emulator. In IBM speak,

hard disks are referred to as DASDs (for

direct-access storage devices). To create

hard disks for your zLinux installation,

enter:

dasdinit -z -lfs U

dasd/sys1.dasd 3390-3 SYS1

dasdinit -z -lfs U

dasd/sys2.dasd 3390-3 SYS2

The -z option configures Zlib compres-

sion. Alternatively, you could select -bz2

for Bzip2 compression; note that the

method is slower, and thus means per-

formance hits without giving you major

disk space savings. The -lfs option refers

01 #!/bin/bash

02

03 PREFIX=/usr/local

04

05 ./configure --prefix=$PREFIX \

06 --enable-cckd-bzip2

\

07

--enable-optimization=yes \

08

--disable-external-gui \

09

--enable-setuid-hercifc

Listing 1: Building Hercules:
Configure Arguments

Figure 1: A throwback to the good old days: an IBM

1403 line printer.

Figure 2: The Hercules console showing the supported features on

startup.

KNOW-HOWHercules Mainframe Emulator

55ISSUE 90MAY 2008

054-059_hercules.indd 55 12.03.2008 11:22:14 Uhr

to large file support; that is, dasdinit

will not split up the hard disk into 2GB

chunks. Depending on your DASD size,

you might want to omit this option so

you can store files on DVD media.

The file names (dasd/sys?.dasd) are

arbitrary. The hard disk type (3390-3)

defines the size, which is about 2.7GB in

my example. The Hercules documenta-

tion gives you a list of available types

and their respective sizes [2].

The last parameter for dasdinit, the

VOLSER name (the disk label), really is

not necessary for Linux, but the installa-

tion writes the label anyway. As a final

step, the administrator needs to add the

disks to the Hercules configuration file

(Listing 2, lines 29-30), thereby assign-

ing the device addresses for Linux to

 reference the disks.

Network Interface
Hercules emulates various types of net-

work connections. The easiest type to

configure is the channel-to-channel

(CTC) connection. To configure two

type-3088 CTC devices at the addresses

0cc0 and 0cc1, you just need to

add one line to the configuration

file (Listing 2, line 34), and assign

an address of 192.168.2.2 to the

guest and 192.168.2.1 to the host.

The HTML documentation explains

the syntax for the device addresses

in particular.

To launch Hercules, type the

command:

hercules -f conf/ U

centos45.conf U

> hercules.log

Figure 2 shows the initial output

at the Hercules console. Here, the

critical message is HHCCT073I,

which tells me that the tun0 net-

work device is open. Unfortu-

nately, the message isn’t com-

pletely reliable because it depends

on the permissions for hercifc; to

be certain, you have to check

01 #

02 # Configuration file for Hercules & CentOS 4.5

s390

03 #

04

05 MODPATH ${MODPATH_HERCULES:=/usr/local/lib/

hercules}

06

07 CPUSERIAL 002623

08 CPUMODEL 2096

09 MAINSIZE 780

10 XPNDSIZE 0 # Expanded storage size in

megabytes

11 CNSLPORT 3270 # TCP port number to which

consoles connect

12 HTTPROOT ${HTTPROOT_HERCULES:=/usr/local/share/

hercules/}

13 HTTPPORT 9091 # HTTP server

14 NUMCPU 1 # Number of CPUs

15 NUMVEC 1 # Vector facilities

emulated

16 SYSEPOCH 1900

17 TZOFFSET +0000

18 OSTAILOR LINUX # OS tailoring

19 PANRATE SLOW # Panel refresh rate

20 ARCHMODE ESAME # Architecture mode S/370,

ESA/390 or ESAME

21 PGMPRDOS RESTRICTED

22

23

24 # Device list

25 # --- ---- --------------------

26

27 # DASD

28

29 0A01 3390 dasd/sys1.dasd

30 0A02 3390 dasd/sys2.dasd

31

32 # Channel to channel: CTCI ip-linux-guest

ip-linux-host

33

34 0cc0.2 3088 CTCI 192.168.2.2 192.168.2.1

Listing 2: Hercules Configuration for CentOS 4.5

01 [root@sirius:~] # route -n

02 Kernel IP routing table

03 Destination Gateway Genmask Flags Metric Ref Use Iface

04 192.168.2.2 0.0.0.0 255.255.255.255 UH 0 0 0 tun0

05 ...

06 127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

07 [root@sirius:~] # ifconfig

08 eth0 ...

09

10 lo ...

11

12 tun0 Link encap:UNSPEC HWaddr

00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

13 inet addr:192.168.2.1 P-t-P:192.168.2.2 Mask:255.255.255.255

14 UP POINTOPOINT RUNNING MTU:1500 Metric:1

15 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

16 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

17 collisions:0 txqueuelen:500

18 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Listing 3: Verifying the Network Configuration

Hercules Mainframe EmulatorKNOW-HOW

56 ISSUE 90 MAY 2008

054-059_hercules.indd 56 12.03.2008 11:22:16 Uhr

the output from route -n and ifconfig

(Listing 3).

Both the routing table (line 4ff.) and

the network configuration (lines 29-35)

must have entries for the tun0 device.

Using Hercules
The Hercules console is used to control

the system. Hercules supports a large

number of commands, the most impor-

tant of which is ipl (initial program

load), which initiates the boot process.

The maxrates command is useful, too; it

outputs the performance in MIPS (mil-

lion instructions per second).

Hercules supports alternate consoles.

Pressing the Esc key toggles between the

line-oriented console shown in Figure 1

and the semi-graphic console shown in

Figure 3. This view gives you the current

performance data, and you can see the

register values flash past.

To run Hercules remotely, you also can

use an http console (Figure 4), which

the administrator must set up in the con-

figuration file (Listing 2, lines 12-13).

Also, you can set up username- and

password-based authentication, but this

does not change the fact that the http

connection is insecure.

Installing zLinux
Mainframes support two system archi-

tectures: zLinux with 31 bits (s390) and

zLinux with 64 bits (s390x). Only the

addressing is 31 bits for the 31-bit vari-

ant; the data itself uses the full 32 bits.

If you are looking for a free 64-bit

zLinux, you can go for either the Think-

Blue/ 64 Linux [3] or the newer CentOS

4.5 [4], which is the distribution I used

for this article.

Debian offers a good alternative;

the 31-bit architecture is maintained

throughout the Debian releases. I will

not cover the differences between the

Debian and CentOS installations.

Installation Steps
Installation of CentOS on the mainframe

can be done across the

wire. Because main-

frames and Hercules do

not support CD drives,

it is necessary to export

the mounted DVD via

NFS or copy the content

of the DVD to an ex-

ported directory. Typing

ipl /cdrom/generic.ins

boots the system at the

Hercules console.

Going forward, you

should see normal

Linux boot messages flash across your

screen. Launching the network configu-

ration program, which prompts you for

the information required to set up a con-

nection, comes next. Listing 4 shows the

messages and responses. Note that the

Hercules console passes commands that

start with a dot through to the running

system.

After completing this phase, the mes-

sage shown in line 32 will appear. Now

you can establish an SSH connection to

the guest address, which takes you to

the CentOS standard installation tool,

Anaconda. After changing a few settings

and mounting the installation source via

NFS, everything should fall into place.

Because the virtual network connection

is not very fast, you can expect the sys-

001 Which kind of network device do you intend to use:

002 .ctc

003 Enter the bus ID and the device number of your CCW devices.

004 CTC/ESCON and LCS need two subchannels:

005 (e.g. "0.0.0600,0.0.0601" will configure the CTC or ESCON interface

006 with the subchannels 0x600 and 0x601)

007 QETH needs three subchannels p.e. 0.0.0300,0.0.0301,0.0.0302

008 .0.0.0cc0,0.0.0cc1

009 Enter the FQDN of your new Linux guest (e.g. s390.redhat.com):

010 .emu-guest.bablokb-local.de

011 Enter the IP address of your new Linux guest:

012 .192.168.2.2

013 Enter the network address of the new Linux guest:

014 .192.168.2.0

015 Enter the IP of your CTC / ESCON / IUCV point-to-point partner:

016 .192.168.2.1

017 Select which protocol should be used for the CTC interface

018 0 for compatibility with p.e. VM TCP service machine (default)

019 1 for enhanced package checking for Linux peers

020 3 for compatibility with OS/390 or z/OS peers

021 .0

022 Enter your DNS server(s), separated by colons (:):

023 .10.173.112.250

024 Enter your DNS search domain(s) (if any), separated by colons (:):

025 .

026 Enter DASD range (e.g. 200-203 or 200,201,202,203)

027 Press <Enter> for autoprobing (not recommended):

028 .0a01-0a02

029

030 Starting telnetd and sshd to allow login over the network.

031

032 Connect now to 192.168.2.2 to start the installation.

Listing 4: Installation of zLinux: First Phase

Figure 3: The semi-graphic Hercules with its colorful console.

KNOW-HOWHercules Mainframe Emulator

57ISSUE 90MAY 2008

054-059_hercules.indd 57 12.03.2008 11:22:17 Uhr

tem to be busy configuring itself for the

next hour or so.

With a real mainframe, on which you

can opt between HMC (hardware man-

agement console) and bootable tapes or

prepare a volume for zLinux z/ OS-side,

this process looks very different.

After the Installation
The ipl command will boot an installed

system on Hercules. As a parameter,

Hercules expects the boot volume ad-

dress (ipl 0a01, in my example). After

IPL, a grub-style boot menu appears, al-

though the system automatically will

boot after waiting 15 seconds. The con-

sole shows typical startup messages for

a (Red Hat) Linux system up until the

login prompt. Working directly at the

console is impractical because it means

typing a dot in front of every command

and because some programs will not run

at the console. The use of an SSH con-

nection from a different machine makes

more sense.

Dynamically Adding Disks
In principle, zLinux is no different from

Linux on any other platform, except for

the way it handles hardware. The follow-

ing example mounts another disk in

/home on the system, but first you must

generate the new disk (file dasd/home.

dasd). Hercules emulates a high-avail-

ability system; the administrator does

not shut down zLinux but does use the

Hercules console to

introduce the new

device:

attach 0a03 U

3390 dasd/U

home.dasd

On the zLinux

page, typing lsdasd

-s -a shows a list of

available DASD de-

vices; you can see

that a new device

is available, but of-

fline. Whereas a mainframe operator

would now type vary online, root would

do this:

echo 1 > /sys/bus/ccw/U

drivers/dasd-eckd/U

0.0.0a03/online

A quick check with lsdasd and a peek

at the /dev directory show that a dasdc

now exists.

Now you need to low-level format and

partition the device: dasdfmt handles the

first of these tasks, and fdasd handles

the second:

dasdfmt -p -v -l HOME01 -b U

4096 -d cdl -f /dev/dasdc

fdasd -a /dev/dasdc

mke2fs -j /dev/dasdc

mount /dev/dasdc /home

If you are setting up multiple partitions,

you need to call fdasd without the -a

 parameter, which takes you to an fdisk-

style partitioning menu.

In the example, you will be using the

whole volume as a large partition; how-

ever, the new device is lost on rebooting.

To prevent this, you need to add a line

for the device to the Hercules configura-

tion file and add a mount entry in /etc/

fstab.

The dasd_mod kernel module expects

the available devices as a start option; a

change to /etc/modprobe.conf takes care

of this:

options dasd_mod U

dasd=0a01-0a03

To start the system, you need a new Ini-

trd. If you want to be on the safe side,

Although Linux still relies on various

schedulers to ensure fair and optimum

resource usage, the mainframe world

has gone its own way. On a mainframe,

users specify the resources they need,

which enables the system to decide

whether the program should run now,

later, or not at all. Listing 5, a classic

copying program, looks fairly compli-

cated compared with the cp command,

but complexity has both disadvantages

and advantages.

Jobs on a mainframe are not much more

than a stack of punch cards shifted to a

file. The job printed here starts with a job

card that specifies the memory, run time,

and job class, which makes it fairly easy

to prioritize. Next comes the copying

program, IEBGENER, and its parameters.

Host programs use logical filenames to

access files; for IEBGENER, these names

– defined by DD (data definition) cards –

are SYSUT1 and SYSUT2.

SYSUT1 (line 5), the input file, is desig-

nated as “OLD” – which means that you

need the file exclusively. If another job is

processing this file, your job will have to

wait. An alternative to this is DISP=SHR,

which allows shared (read) access (and

might be a more realistic alternative for

a copying program).

Note the specification of the target file in

lines 6-9. (NEW,CATLG) stipulates that

the file must not exist and that it should

be cataloged after successful processing.

If the file exists, the job will not run. The

other details specify the space require-

ments (primary 5 cylinder, additionally

up to 15 times 2 cylinders) and the physi-

cal file format. On Linux, a rogue pro-

gram can completely fill up the filesys-

tem; on a mainframe, the program is

stopped if it oversteps its space assign-

ment.

Optimization entails additional effort. In

the past, when mainframes were much

smaller, this kind of safeguard was more

important, whereas today’s mainframes

include options that simplify the process.

The goal of maximizing use has not

changed. Utilization values of 90 percent

for 24x7 operations are possible, and

they make financial sense.

The protocol that mainframe terminals

use to communicate with the host pro-

vides another example of maximum

 resource utilization. Physical terminals

no longer exist; programs such as x3270

emulate the protocol. In contrast to Unix

keyboard drivers, which process every

single key press, the user of a 3270 ter-

minal fills out all the fields on the screen

and then transmits everything at once.

This reduces the number of processing

steps, at the cost of making programs

such as Vi or Emacs impossible to run.

The Mainframe Principle

Figure 4: The clear-cut Hercules web console.

Hercules Mainframe EmulatorKNOW-HOW

58 ISSUE 90 MAY 2008

054-059_hercules.indd 58 12.03.2008 11:22:17 Uhr

you might want to copy the existing Ini-

trd and add an entry to the boot menu

in /etc/zipl.conf, to be able to launch the

previous version in case of an error:

cd /boot

mv initrd-2.6.9-55.EL.img U

initrd-2.6.9-55.U

EL.img.orig

mkinitrd -v initrd-2.6.9-55.EL.U

img 2.6.9-55.EL

vi /etc/zipl.conf

-> Modify to load the U

original initrd

zipl -V

This procedure is something like the leg-

acy Linux bootloader, lilo, in which you

needed to launch the lilo program after

modifying the configuration file.

Shadow Files Instead of
Snapshots
Hercules does not use snapshots like

other virtualization programs, but it

does implement shadow files, which can

be put to similar use. To use a shadow

file, you need to change the lines with

the hard disk configuration slightly (List-

ing 2, line 29ff.):

0A01 3390 dasd/sys1.dasd ro U

sf=shadow/sys1_*.dasd

0A02 3390 dasd/sys2.dasd ro U

sf=shadow/sys2_*.dasd

After starting, Hercules automatically

writes the shadow/sys?_1.dasd files. The

sf+ * command at the Hercules console

creates a new set of shadow files, up to

a maximum of eight files. sf- * merge or

sf- * nomerge accepts or discards the

changes to the current shadow step.

 Accepting means that sf- merge writes

the changes from, for example, sys1_

2.dasd to sys1_1.dasd. To write changes

to the original files, you must specify sf-

* force (or omit the read-only option ro).

The Hercules suspend and resume

commands save and restore the com-

plete system state; however, this mecha-

nism does not work reliably – zLinux

will not work after you use it.

z/ OS and MVS
From a Linux perspective, the mainframe

is just one architecture out of many, so it

makes sense to look at the operating sys-

tems that normally run on mainframes.

On the current crop of systems, the oper-

ating system is z/ OS 1.x. (Version 1.9

was released in September 2007.)

Unfortunately, z/ OS is not free. Al-

though there is an “ADCD” package for

developers and a z/ OS demo package,

you at least need to lease an IBM ma-

chine to use it legally. This just leaves

the granddaddy of today’s z/ OS, MVS

(version 3.8), as an alternative for exper-

imenting at home.

MVS (Multiple Virtual Storage) was

developed from earlier IBM operating

systems; its direct predecessor is the OS/

360 MVT (Multitasking with a Variable

number of Tasks) variant. MVS then be-

came the operating system for the next

generation of hardware, the System/ 370

computer, which supported virtual

memory as of 1972.

Interestingly, the older S/ 360-67 mod-

els did support virtual memory, but at

the time, batch processing was regarded

as far more important and hardware sup-

port for memory virtualization was thus

omitted from the S/ 370 series.

MVS was released in 1974 and led di-

rectly via MVS/ XA, MVS/ ESA, and OS/

390 to z/ OS. Now MVS is freely avail-

able because operating systems at the

time were distributed openly.

A “turnkey” MVS system is available

for Hercules: the MVS Turnkey System

[7][8]. The only additional software you

need is a 3270 terminal emulator; Linux

users can install the x3270 package that

comes with their distributions.

If you think you can set up a main-

frame system quickly and start using it,

you will be disappointed. Although you

can boot and down the system using the

“Cookbook” [8], it will not help you

much if you do not have any previous

mainframe experience. If you are seri-

ously interested in immersing yourself

in this material and working your way

through the available documentation –

including the current z/ OS documenta-

tion, which is freely available from IBM

– you will enjoy the experience of your

own mainframe.

Conclusions
Hercules offers a stable emulator for

mainframe architecture. Running on a

powerful midrange system, the perfor-

mance should be sufficient to replace a

zLinux test LPAR. If you are thinking

of porting your software to zLinux, you

can use Hercules or the Community

 Development System for Linux (LCDS),

a service provided by IBM [9]. ■

01 //MYJOB JOB (COPY),'COPY',CLASS=A,MSGCLASS=A,REGION=256K,

02 // TIME=5,MSGLEVEL=(1,1),NOTIFY=HERC04

03 //COPY EXEC PGM=IEBGENER

04 //SYSPRINT DD SYSOUT=*

05 //SYSUT1 DD DISP=OLD,DSN=HERC04.DATEI2

06 //SYSUT2 DD DSN=HERC04.FILE2.BAK,DISP=(NEW,CATLG),

07 // UNIT=SYSDA,VOL=SER=PUB002,

08 // SPACE=(CYL,(5,2,0)),

09 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=4096,DSORG=PS)

10 //SYSIN DD DUMMY

Listing 5: Copying a File with IEBGENER

[1] Hercules:

http:// www. hercules-390. org

[2] Conversion table for DASD sizes:

http:// www. sdisw. com/ vm/ dasd_ca-

pacity. html

[3] ThinkBlue/ 64 Linux for zSeries:

http:// linux. zseries. org

[4] CentOS: http:// www. centos. org

[5] MacIsaac, Michael, Ronald Annuss,

Wolfgang Engel, et al. Linux for IBM

eServer zSeries and S/ 390: Distribu-

tions. Redbooks, 2001:

http:// www. redbooks. ibm. com/

 redbooks/ pdfs/ sg246264. pdf

[6] Linux Redbook portal:

http:// www. redbooks. ibm. com/

 Redbooks. nsf/ portals/ Linux

[7] The MVS 3.8j Turnkey System:

http:// www. ibiblio. org/ jmaynard/

 turnkey-mvs-3. zip

[8] Information about the MVS Turnkey

System: http:// www. bsp-gmbh. com/

 turnkey/ index. html

[9] Community Development System for

Linux (LCDS): http:// www-03. ibm.

 com/ systems/ z/ os/ linux/ lcds

INFO

KNOW-HOWHercules Mainframe Emulator

59ISSUE 90MAY 2008

054-059_hercules.indd 59 12.03.2008 11:22:18 Uhr

