
91

I
n the past few years, Linux has pro-

gressed in the field of hardware de-

tection and management. The days

of static device files huddled below the

/dev directory are long gone, and Devfs

is also obsolete. Since kernel 2.6, udev

[1] has been responsible for handling

both the device filesystem and Hotplug,

which includes setting up the required

device files, setting permissions, and

 optionally launching certain programs.

User Space
In contrast to its predecessors, udev runs

in user space – that is, as a “normal”

program. This has a number of advan-

tages, including freeing the kernel from

the responsibility of management and

naming attached devices, which facili-

tates configuration.

Udev has more benefits for users; for

example, you can choose your own de-

vice names, and hardware assignments

are always unique.

To keep everything running smoothly,

udev needs rules that it references to dis-

cover a device’s name and how to han-

dle the device.

Device Garage
The udev “repository” is the /dev direc-

tory, which is where the device files that

allow applications to access hardware

reside. If you look inside the folder, you

will see not only the file names for your

hard disks and partitions (for example,

sda, as in sda1, sda2), but also files for

CD/ DVD drives (a symlink to cdrom typ-

ically points to the “genuine” device,

e.g., hdc), serial ports (e.g., ttyS0, ttyS1),

and so on (see Figure 1).

The operating system stores the con-

tent of the /dev folder in a temporary

filesystem, as you can see by listing the

currently mounted RIS:

$ mount

...

udev on /dev type tmpfs (rw,mode

=0755)

...

Using udev

DEVICE JUNGLE

01 $ ls -la /etc/udev/rules.d/

02 ...

03 lrwxrwxrwx 1 root root 20

2007-05-09 23:40 020_

permissions.rules -> ../

permissions.rules

04 lrwxrwxrwx 1 root root 19

2007-05-10 00:39 025_

libgphoto2.rules -> ../

libgphoto2.rules

05 lrwxrwxrwx 1 root root 16

2007-05-10 00:39 025_libsane.

rules -> ../libsane.rules

06 ...

07 lrwxrwxrwx 1 root root 12

2007-05-10 00:36 z99_hal.rules

-> ../hal.rules

Listing 1: Rules

w
w

w
.s

x
c
.h

u

Learn how to create your own udev rules and deploy command-line

tools to monitor and control udev events to clear your way through

the Linux device jungle. BY HEIKE JURZIK

LINUXUSERCommand Line: Using udev

91ISSUE 87FEBRUARY 2008

091-093_command.indd 91 13.12.2007 16:39:24 Uhr

Linux always sets up the files in /dev at

boot time, but it also sets up a file when

a new device is attached. It only makes

sense that a device name will disappear

when you remove the matching hard-

ware. What keeps the directory clean

and dynamic, while avoiding user con-

fusion over changing device names, are

the udev rules.

Udev Rules!
Various rule files, located in /etc/udev/

and /etc/udev/rules.d/, control udev’s

behavior. Some distributions, such as

Debian, use symbolic links in the latter

directory to point to the rules in

/etc/udev/.

As you can see from Listing 1, rules

are enumerated or start with a letter be-

cause udev works through the directory

in alphabetic order when an event oc-

curs. This method ensures that critical

rules are processed first. The last port of

call is normally the HAL daemon. (Udev

notifies the daemon of the new device.)

If you take a closer look at a rule file,

you will discover one or multiple in-

structions in a single line (without line

breaks). The instructions contain vari-

ous comma-separated conditions and

control commands.

Shell-style wildcards, such as *, ?, [...],

and so on, are supported. Additionally,

various operators are typically used (see

Table 1). Table 2 shows you an overview

of frequently used constants and vari-

ables. The man page (man udev) also

has a full list of operators, constants,

and variables.

Creating your own udev rules, thus ex-

tending hardware detection functional-

ity, is fairly easy. If you use external USB

memory devices, they are assigned dif-

ferent names depending on the order

you plug them in. In this case, I’ll as-

sume you have a hard disk on which

you regularly back up your data.

Saving Steps
Of course, you could plug in the disk,

wait until it is correctly mounted, then

discover the mount points and launch a

backup script to complete the job.

Thanks to udev, you can save a couple

of these steps. To do so, you need to cre-

ate a rule that automatically assigns the

same device name to the hard disk. If

you like, you can add a mount command

to the rule or run a shell script to launch

the backup.

First, you need some information

about the device; you can use the lsusb

(Listing 2) program for this. Make a note

of the details that follow idVendor, id-

Product, or iSerial, which you need to

uniquely identify the device.

Creating Your Own Rule
Now, you need to write a new rule file.

The file will reside in /etc/udev/rules.d.

Working as root, launch your favorite

editor to create the file.

Use a unique number to insert the rule

into the existing sequence, and add a

.rules prefix. On my Debian Etch test

system, I assigned the name z98_usb-

platte.rules for the file and then added

the following content:

SUBSYSTEM=="block", SYSFS{idProd

uct}=="2338", SYSFS{idVendor}=="

152d", NAME="backup"

Apart from saying that the device is a

block device, the rule states the idProd-

uct and idVendor information discovered

by running lsusb and then specifies the

name of the device file.

Figure 1: The Linux device garage is located in the /dev folder.

Devfs: The predecessor to udev. Up to

kernel 2.4, the device filesystem was re-

sponsible for managing files in the /dev

directory. Devfs tasks included creating

and deleting device files for removable

media. On top of this, Devfs was respon-

sible for rights management and thus

controlled user access to devices.

Hotplug: The Hotplug system controls

hardware initialization, which means

any hardware discovered in the course

of the boot process as well as devices

that are added and removed at run time.

User space: Memory area reserved for

user applications (i.e., for programs and

data that are not directly related to the

kernel.)

HAL: Hardware Abstraction Layer. The

HAL daemon provides the details (e.g.,

driver information, drive types, and so

on) of available devices to programs.

GLOSSARY

Operator Type Meaning

== Comparison True if the two expressions are identical

!= Comparison True if the two expressions are not identical

= Assignment Assigns the value on the right to the expression on

 the left

:= Assignment Like =, protects the left-hand side against later

 changes

+= Assignment Adds the value on the right to that on the left

Table 1: Operators

Command Line: Using udevLINUXUSER

92 ISSUE 87 FEBRUARY 2008

091-093_command.indd 92 13.12.2007 16:39:40 Uhr

Running the command

udevcontrol reload_rules

as root reparses the rules. Alternatively,

you can unplug your USB device and

then plug it back in. The udevmonitor

tool shows you what is going on behind

the scenes. In combination with the

--env option, the tool becomes more ver-

bose and shows various details related

to the rule on the test machine:

udevmonitor --env

...

ACTION=add

DEVPATH=/block/sda/sda1

SUBSYSTEM=block

...

DEVNAME=/dev/backup

...

A quick check of the /dev directory re-

veals that udev really has created a /dev/

backup device file, just like the doctor

ordered. If you unplug the USB disk, the

entry disappears again.

Mount or Script?
As Table 2 shows, you can use RUN to

define the program to execute in your

rule file.

If you want to mount /dev/backup in

/media/backup in one fell swoop, you

can extend the rule like this:

SUBSYSTEM=="block", SYSFS{idProd

uct}=="2338", SYSFS{idVendor}=="

152d", NAME="backup", RUN+="/bin

/mount /dev/backup U

/media/backup"

Make sure you enter the pull path to

the program (/bin/mount in this case),

but you need to create the mount point

/media/backup with the mkdir com-

mand (working as root) first:

$ mkdir /media/backup

Then, you can launch the backup pro-

gram manually. As an alternative, you

could create an entry for the device in

your /etc/fstab file as follows:

/dev/backup /media/backup ext3 u

sers,atime,noauto,rw,nodev,exec,

nosuid 0 0

This would let you add the mount

 command to the backup script to make

sure that the external disk is mounted

before backing up your data. In the udev

rule, you would then replace "/bin/

mount ... with the path to the backup

script:

..., RUN+="/home/chicken/bin/ U

backup.sh"

Fighting NIC Chaos
If your computer has a single Ethernet

card, the card will typically go by the

name eth0. If you add a second card,

such as a WLAN device to the machine,

the card could be ath0 or eth1 depending

on the driver. If you prefer your network

cards to use the same names, you could

create a rule to enforce this behavior. In-

stead of idProduct or idVendor, type the

MAC address for your NIC, as shown

after SYSFS{address} here. To discover

the MAC, you can run ifconfig:

$ /sbin/ifconfig

eth0 Protocol:Ethernet Hardwa

re Address 00:10:A7:21:36:7C

...

ath0 Protocol:Ethernet Hardwa

re Address 00:00:C0:77:D8:F5

...

Listing 3 shows you how to create a

matching rule. �

[1] Udev homepage: http:// www. kernel.

 org/ pub/ linux/ utils/ kernel/ hotplug/

 udev. html

INFO

01 KERNEL=="eth*",

SYSFS{address}=="00:10:

A7:21:36:7C", NAME="eth0"

02 KERNEL=="eth*",

SYSFS{address}=="00:00:C0:77:

D8:F5", NAME="wlan0"

Listing 3: Matching Rule

Name Meaning

ACTION Event, either add or remove

SUBSYSTEM Device type – for example, usb_device, block, and so on

BUS Device bus system – for example, ieee1394 or usb

ID Device ID (in relation to the bus)

NAME Name of network device (eth0, eth1, etc.) or the device file in /dev

KERNEL Device name according to the kernel

SYSFS{Datei} Uses information from various files in /sys (containing hardware details);

 maximum of five SYSFS constants per rule

OWNER Owner (user name or UID)

GROUP Group (name or GID)

MODE Permissions (octal number)

RUN Executes the specified program

SYMLINK Creates a symbolic link that points to the device name proper

GOTO Jumps to a specified label

LABEL Name of label

Table 2: Udev: Constants and Variables

01 $ lsusb -v

02 ...

03 Bus 003 Device 010: ID

152d:2338

04 Device Descriptor:

05 ...

06 idVendor 0x152d

07 idProduct 0x2338

08 bcdDevice 1.00

09 iManufacturer 1

10 iProduct 2

11 iSerial 5

12 bNumConfigurations 1

13 ...

Listing 2: lsusb

Heike Jurzik studied

German, Computer

Science and English

at the University of

Cologne, Germany.

She discovered

Linux in 1996 and

has been fascinated

with the scope of the Linux com-

mand line ever since. In her leisure

time you might find Heike hanging

out at Irish folk sessions or visiting

 Ireland.

T
H

E
 A

U
T

H
O

R

LINUXUSERCommand Line: Using udev

93ISSUE 87FEBRUARY 2008

091-093_command.indd 93 13.12.2007 16:39:43 Uhr

