
28

F
or years, developers had little

success convincing Linus Tor-

valds of the need for a program-

ming interface for userspace drivers. A

userspace driver needs to provide appli-

cation program interfaces for hardware

access, like any other driver; however,

the userspace driver operates from the

application layer, so it runs in non-privi-

leged mode.

Now Linus has finally given up his re-

sistance. The future kernel 2.6.23 will

permit userspace drivers, and it will pro-

vide a kernel interface for them [1]. The

code originated with Greg Kroah-Hart-

man and his Industrial IO interface [2].

According to microkernel proponents,

simplifying the kernel by moving func-

tions into user space promotes stability.

At the same time, removing the driver

from the kernel takes it out from under

the GPL, which means the vendor

doesn’t have to reveal the driver’s source

code. Linux fans have been chatting in

various forums about whether this new

support for drivers in user space will

motivate companies that have previously

steered clear of GPLing their software to

write binary drivers for their hardware

and whether Linux is thus slowly but

surely mutating into the kind of micro-

kernel architecture that Linus has always

rejected.

As you’ll learn in this article, this new

userspace driver model still requires

some kernel code. The driver needs

some kernel space code to link the phys-

ical device to the userspace component

of the driver (see Figure 1). Additionally,

the kernel creates pseudofiles on the sys

New versions of the Linux kernel will support a special userspace driver

model, but some technical pitfalls might limit the use of this interesting

new feature. BY EVA-KATHARINA KUNST AND JÜRGEN QUADE

Userspace drivers in the new Linux kernel

DRIVER SHIFT
filesystem, which the userspace part ref-

erences to learn addresses for access.

In this article, we introduce the new

Linux userspace driver model.

Userland to the Fore
The userspace side of the driver, which

uses Mmap to bind hardware memory

areas into its own address space for

hardware access, can’t read or write the

corresponding registers until it has done

so. If the hardware generates interrupts,

the kernel part also needs to include an

interrupt service routine (ISR).

Userland can make sure it is notified

when an interrupt is thrown by blocking

and reading from a device file (/dev/

Figure 1: Even a userspace driver needs a

kernel component.

Hardware

K
er

ne
l

U
se

r

Application

Direct access to

the hardware

registers

Kernel part of driver

User part

Proprietary interface

A
lo

y
s
iu

s
 P

a
trim

o
n
io

, F
o
to

lia

Userspace DriversCOVER STORY

28 ISSUE 86 JANUARY 2008

028-031_userspace.indd 28 15.11.2007 10:10:09 Uhr

29

uio0) that is created by the kernel. When

an interrupt occurs, the process waiting

in user space wakes up. The driver com-

ponents then exchange data via the

mapped hardware registers (addresses).

Thus, the userspace driver model just

specifies how hardware resources are

mapped in an application’s memory

space and how triggered events (inter-

rupts) are handled – by blocking a read

or calling select() against a device file.

It is left to the driver developer to deter-

mine how applications access the device

via a userspace driver (see Figure 1),

and this is why kernel developers refer

to the mechanism as User I/ O (UIO).

The Kernel Part Juggles
Three Objects
Listing 1 shows the kernel part of a mini-

mal userspace driver without interrupt

handling. All told, the code fills three

data structures (objects) with content

and passes them in to the kernel: The

device model, the sys filesystem, or both

need a driver (struct device_driver) and a

device object (e.g., struct platform_de-

vice); the UIO subsystem needs an info

object uio_info (Figure 2).

If you implement the methods probe()

and remove() for the sys filesystem

driver object, you can identify the hard-

ware addresses and enter them in the

info object. In this case, you can instan-

tiate a PCI device instead of the platform

01 #include <linux/module.h>

02 #include <linux/platform_

device.h>

03 #include <linux/uio_driver.h>

04

 05 struct uio_info kpart_info = {

06 .name = "kpart",

07 .version = "0.1",

08 .irq = UIO_IRQ_NONE,

09 };

10

 11 static int drv_kpart_

probe(struct device *dev);

12 static int drv_kpart_

remove(struct device *dev);

13 static struct device_driver

uio_dummy_driver = {

14 .name = "kpart",

15 .bus = &platform_bus_type,

16 .probe = drv_kpart_probe,

17 .remove = drv_kpart_remove,

18 };

19

 20 static int drv_kpart_

probe(struct device *dev)

21 {

22 printk("drv_kpart_probe(%p

)\n", dev);

23 kpart_info.mem[0].addr =

(unsigned long)kmalloc(512,

GFP_KERNEL);

24 if(kpart_info.mem[0].

addr==0)

25 return -ENOMEM;

26 kpart_info.mem[0].memtype =

UIO_MEM_LOGICAL;

27 kpart_info.mem[0].size =

512;

28 if(uio_register_

device(dev,&kpart_info))

29 return -ENODEV;

30 return 0;

31 }

32

 33 static int drv_kpart_

remove(struct device *dev)

34 {

35 uio_unregister_

device(&kpart_info);

36 return 0;

37 }

38

 39 static struct platform_device

*uio_dummy_device;

40 static int __init uio_kpart_

init(void)

41 {

42 uio_dummy_device = platform_

device_register_

simple("kpart", -1,

43

 NULL, 0);

44 return driver_register(&uio_

dummy_driver);

45 }

46

 47 static void __exit uio_kpart_

exit(void)

48 {

49 platform_device_

unregister(uio_dummy_device);

50 driver_unregister(&uio_

dummy_driver);

51 }

52

 53 module_init(uio_kpart_init);

54 module_exit(uio_kpart_exit);

55

 56 MODULE_LICENSE("GPL");

Listing 1: kernel_part.c

Figure 2: In the kernel part, the driver instantiates three objects and passes them to the

 kernel core.

st
ru

ct

de
vi

ce
_d

ri
ve

r

st
ru

ct

ui
o_

in
fo

st
ru

ct

xx
x_

de
vi

ce

Sys filesystem UIO subsystem

Mmap >>read()<<
>>select()<<

ISR

...

C
or

e
D

ri
ve

r
K

er
ne

l
U

se
r

User part

Kernel part

PCI subsystem

COVER STORYUserspace Drivers

29ISSUE 86JANUARY 2008

028-031_userspace.indd 29 15.11.2007 10:10:16 Uhr

device. A call to the uio_register_device()

function finally hands the initialized info

object over to the UIO subsystem.

Performance Matters
In the scope of registration, the UIO sub-

system checks to see whether the device

model contains the uio device class. If

not, it creates the class. At the same

time, the UIO subsystem ensures a major

number is assigned to the module. After

this, the subsystem reserves a minor

number to the driver; udev creates the

matching device file, such as /dev/uio0.

Finally, the routine creates the re-

quired attribute files and, if the driver

developer implements them, adds the

ISR. To write this kernel code, the pro-

grammer needs a good working knowl-

edge of the kernel, and especially of de-

vice model handling, the sys filesystem,

and the implementation of ISRs.

For each driver that uses uio_register_

device() to register with the UIO subsys-

tem, the subsystem creates a device file

with the pattern /dev/uio0, /dev/uio1,

/dev/uio2, and so on. Then the user side

of the driver must discover which of the

listed device files the hardware is hiding

behind. To do so, it can use the pseudo-

files in the sys filesystem (Figure 3).

The name file, which contains what is

hopefully the unique driver name, can

be read from the path /sys/class/uio/

uioX (where X is replaced by 0, 1, and so

on). The user part finds the address in-

formation stored by the kernel part in

the relevant directory. The user part then

calls mmap() to bind the addresses into

its own address space. Opening a device

file – /dev/uio0, for example – gives you

the file descriptor required for this. If

mmap() is successful, the user part (see

Advantages:

• Version change: The user only needs

to rebuild the kernel part after making

any required modifications.

• Stability: Protects the kernel against

buggy drivers.

• Floating point is available.

• Efficient, because processes do not

need to be swapped.

• License: The user part of the source

code does not need to be published

(although this is a controversial sub-

ject in the context of the GPL).

Disadvantages:

• Kernel know-how is required for

 standard drivers, the sys filesystem,

IRQ, and PCI.

• Timing is less precise than in kernel

space.

• Response to interrupts: Response

times are longer than in kernel space

(process change).

• Functionality is severely restricted in

userland; for example, DMA is not

available.

• API: The application can’t use a de-

fined interface to access the device.

• Restricted security is sometimes

difficult to achieve.

Pros and Cons of the
Userspace Driver Model

01 #include <stdio.h>

02 #include <fcntl.h>

03 #include <stdlib.h>

04 #include <unistd.h>

05 #include <sys/mman.h>

06

 07 #define UIO_DEV "/dev/uio0"

08 #define UIO_ADDR "/sys/class/uio/uio0/maps/map0/addr"

09 #define UIO_SIZE "/sys/class/uio/uio0/maps/map0/size"

10

 11 static char uio_addr_buf[16], uio_size_buf[16];

12

 13 int main(int argc, char **argv)

14 {

15 int uio_fd, addr_fd, size_fd;

16 int uio_size;

17 void *uio_addr, *access_address;

18

 19 addr_fd = open(UIO_ADDR, O_RDONLY);

20 size_fd = open(UIO_SIZE, O_RDONLY);

21 uio_fd = open(UIO_DEV, O_RDONLY);

22 if(addr_fd<0 || size_fd<0 || uio_fd<0) {

23 fprintf(stderr,"Cannot open UIO files...\n");

24 return -1;

25 }

26

 27 read(addr_fd, uio_addr_buf, sizeof(uio_addr_buf));

28 read(size_fd, uio_size_buf, sizeof(uio_size_buf));

29 uio_addr = (void *)strtoul(uio_addr_buf, NULL, 0);

30 uio_size = (int)strtol(uio_size_buf, NULL, 0);

31

 32 access_address = mmap(NULL, uio_size,

33 PROT_READ, MAP_SHARED, uio_fd, 0);

34 printf("The HW address %p (length %d) "

35 "can be accessed over"

36 " logical address %p\n", uio_addr,

37 uio_size, access_address);

38

 39 // Access to the hardware registers can occur from here on ...

40 // ...

41 return 0;

42 }

Listing 2: user_part.c

Userspace DriversCOVER STORY

30 ISSUE 86 JANUARY 2008

028-031_userspace.indd 30 15.11.2007 10:10:16 Uhr

sample code in Listing 2) can now ac-

cess the hardware register.

A routine that needs to be notified

when interrupts occur calls select() or

read() in non-blocking mode. Inciden-

tally, read() returns the number of

events (interrupts) that occur as a 4-byte

value. Just to be

sure, the mecha-

nism only works if

you request ex-

actly 4 bytes from

the kernel as an

s32 data type!

 Access via the cat

command, for

 example, which

always requests

4096 bytes, will

fail.

Quick and
Dirty ISR
The ISR you need

to program for the kernel to handle this

can be fairly lean. All it has to do is as-

certain whether its own hardware has

triggered an interrupt and, if so, ac-

knowledge the interrupt on the hardware

side and return IRQ_HANDLED. If you

want to use a kernel-based approach to

wake up the sleeping user part, you can

call the uio_event_notify() function.

Do It Yourself
If you are interested in trying out the

new interface, you will need a very re-

cent kernel, for example 2.6.23-rc3.

Also, you will need to enable the UIO

subsystem below Device Drivers | User-

space I/ O | Userspace I/ O Drivers in the

kernel configuration (see Figure 4). If

UIO is built as a module in your kernel,

root can load this by running modprobe

uio.

After this, you can generate the user-

space driver – that is, both the kernel

module and the userspace part. A make-

file is shown in Listing 3. To keep the ex-

ample simple, it neither binds PCI hard-

ware nor uses any interrupts. For more

information on this, please refer to “The

Userspace I/ O HOWTO” DocBook.

Conclusions
Although Linus Torvalds has now added

the UIO subsystem to the current kernel,

this change can’t be seen as a major par-

adigm shift with respect to userspace

drivers. The new driver model offers a

standard structure for developing drivers

in userspace, but the 1000 lines of code

of the UIO subsystem don’t really give

programmers more than Mmap and the

normal driver interfaces already gave

them. Also, the new model provides no

mechanisms for binding hardware to the

existing kernel subsystems, such as net-

work or block device drivers.

Restricted functionality and the lack

of a defined interface between the ap-

plication and the userspace driver raise

barriers against userspace drivers be-

coming popular outside of embedded

applications. �

[1] Linus Torvalds’ announcement on

kernel 2.6.23-rc1: http:// article. gmane.

 org/ gmane. linux. kernel/ 559066

[2] Simple userspace interface for PCI

drivers: http:// www. uwsg. indiana. edu/

 hypermail/ linux/ kernel/ 0608. 3/ 1908.

 html

[3] Complete listings for this article:

http:// www. linux-magazine. com/

 Magazine/ Downloads/ 86

INFO

01 ifneq ($(KERNELRELEASE),)

02 obj-m := kernel_part.o

03

 04 else

05 KDIR := /lib/modules/$(shell uname -r)/build

06 PWD := $(shell pwd)

07

 08 default:

09 $(MAKE) -C $(KDIR) M=$(PWD) modules

10 endif

11

 12 clean:

13 rm -f *.ko *.o user_part

14

 15 user_part: user_part.c

16 cc -g -Wall user_part.c -o user_part

Listing 3: Makefile for Kernel and User Part

Figure 4: Userspace drivers scheduled for kernel 2.6.23 are initially

disabled in the kernel configuration.

Figure 3: As soon as the kernel part of the

userspace driver has been loaded, UIO cre-

ates information on the sys filesystem. The

user part needs to retrieve and evaluate the

information to access the hardware.

COVER STORYUserspace Drivers

31ISSUE 86JANUARY 2008

028-031_userspace.indd 31 15.11.2007 10:10:17 Uhr

