
tion might just wait for a while. The
function will not return to the main pro-
gram loop until the current process has
released the file, allowing the next user
to open it.

Thus, locks can solve the problem of
email messages that arrive at the same
time. The LDA with the first message
simply locks the mailbox. The LDA with
the second message gets an error when it
attempts to open the mailbox, waits for a
while, and tries again later. When the
first LDA has written the message, closed
the mailbox and removed the lock, there
is nothing to stop the second message
arriving safely.

Unfortunately, file locks also actually
create a few problems. One of the most
minor problems is that they can change
the order in which things happen. The
following scenario explains what can
happen: imagine that the LDA is just
delivering a message and has locked the
mailbox; a second process is waiting for
the file to be released as it needs to
deliver a second message.

What happens if a third message just
happens to arrive at exactly the same
time the first LDA releases the mailbox.
The third message again locks the file,
and the second LDA has to wait: a classic
example of a race condition.

Stale
Stale locks are a far more
serious problem. Stale
locks occur when a pro-
gram fails to release files
because it has crashed,
or a user has killed the
program.

This would mean
other processes would
have to wait forever for
the file to be released.

Most Linux machines have an
MTA, a Mail Transfer Agent.
This can be Postfix, Exim or

even Sendmail. The MTA either uses a
Fetchmail process or TCP to fetch email
messages. When the MTA finds a mes-
sage addressed to the local user, it passes
the message on to the Local Delivery
Agent (LDA). And the LDA stores the
message in a mailbox file, after possibly
taking a detour via a filter such as Proc-
mail.

If two messages arrive at the same
time, the MTA will hand both of them to
an LDA process at the same (see Figure
1). Each process will then attempt to
write to the same mailbox file, again at
the same time. If you are lucky, the mes-
sages end up in the right file, but in the
wrong order, but you are far more likely
to lose a file as the processes overwrite
each other’s data.

Organized Access with Locks
Locks are the typical answer to this
issue. A lock denies access to a resource
while a process is using it. If you attempt
to access a locked file, you might get an
error message, or the file opening func-

A genuine multitasking system like

Linux runs many processes concur-

rently. Programs must compete for

data access. Assigning locks to files

ensures exclusive access and pre-

vents the possibility of data.

BY MARC ANDRÉ SELIG

Insider Tips: Locks

Competitive Thinking

60 January 2005 www.linux-magazine.com

Admin Workshop: LocksSYSADMIN

01 #!/usr/bin/perl -wT
02 use Fcntl ':flock';
03 sysopen(FH, "File", O_RDWR|O_CREAT) or die

"Error sysopen: $!";
04 flock(FH, LOCK_EX) or die "Error flock: $!";
05
06 # ... Write file ...
07
08 flock(FH, LOCK_UN) or die "Error flock: $!";
09 close FH or die "Error close: $!";

Listing 1: File Locking with Perl

BM
W

 AG

Email messages cannot be delivered, and
users cannot edit the mailbox. Stale
locks are particularly dangerous on NFS
servers; they can even cause the server
to freeze.

When a program uses locks, it should
check to see if there is an active process
assigned to the locked file. Some locks
disappear automatically when the
accompanying process terminates. Other
lockfiles use the process ID in their
names, or as part of their contents.

Lock Variants
There are many different approaches to
implementing file locking. The two basic
categories are mandatory and advisory
locks, and the kernel has system calls for
both variants.

Processes cannot ignore mandatory
locks. The kernel takes care of denying
access to the locked resource until the
lock is removed. This is basically a safe
method, although it is susceptible to
stale locks and fairly useless for network

file systems such as
NFS and AFS.

An advisory or dis-
cretionary lock is
simply a note to the
effect that a file is
locked, although there
is no saying whether
programs will honor
the lock. It always
makes sense to be care-
ful with locked files.

Soft locks of this kind
can be implemented by
the kernel and by user
space libraries. It is also
possible to use simple

files to implement advisory locks. This
method also works with NFS, assuming
the program provides a more or less
atomic file opening function.

The bad news is; if you are looking to
write a program for use with any flavor
of Unix, mandatory locks are not a good
idea. On the upside, programs for use
with any version of Linux are a lot
simpler, since Linux has the POSIX-com-
patible fcntl function (which is identical
to lockf on Linux) and the BSD-compati-
ble flock. Libraries often facilitate the use
of these monsters. Listing 1 shows an
example in Perl.

Lockfiles
Primitive semaphores are simpler than
the kernel locks we have looked at so far.
Literally speaking, a semaphore is a visi-
ble signal used for ship to ship
communication in days gone by. Under
Unix, a semaphore is a file or data struc-
ture that indicates a state – the state of a
resource, for example.

Programs typically
indicate a locked
mailbox by append-
ing a .lock extension
to the filename (for
example, the mailbox
file /var/mail/mas

would lead to a lockfile called
/var/mail/mas.lock). This technique
even works on NFS, although this
assumes that the program modifying the
mailbox is permitted to create a new file
in /var/mail/.

Programs need to check for existing
lockfiles, as mentioned previously. Lock-
file checking and creation needs to be a
single operation to avoid a race condi-
tion. The following pseudo-code shows
you what a race condition looks like:

IF: not exists file.lock
THEN: create file.lock
ELSE: wait

If two programs run this code at exactly
the same time, both enter the THEN
branch of the condition and create the
lock file. This undermines the whole
principle of locking, as both programs
will again access the mailbox at the
same time. The following approach
makes more sense:

IF: create exclusive file.lock
THEN: do something
ELSE: wait

This checks for and creates the lockfile
in a single atomic operation. Even if two
programs run this code at the same time,
this will not cause a race condition
because one of the programs will create
the file before the other.

Listing 2 shows an implementation of
the previous pseudo-code in Perl. The
shell script in Listing 3 uses the lockfile
program that is part of Procmail.

A word of warning: for networked
filesystems, lockfiles are often unreliable.
Don’t depend on locks performing as
expected over NFS exports. ■

61www.linux-magazine.com January 2005

SYSADMINAdmin Workshop: Locks

[1] Marc André Selig:“Official Calls”, Linux
Magazine #43 / June 2004, p62.

INFO

01 #!/bin/sh
02 # lockfile is part of the procmail distribution and
03 # available on most Linux distributions
04 lockfile file.lock
05 # ...
06 rm -f file.lock

Listing 3: File Locking Primitive in the Shell

01 #!/usr/bin/perl -w
02 use Fcntl;
03 sysopen(FH, "file.lock", O_WRONLY|O_EXCL|O_CREAT)
04 or die "Error sysopen: $!");

Listing 2: File Locking in Perl

Figure 1: Without locking two email messages arriving at the same
time would overwrite each other, as one LDA process is unaware of
what the other is doing.

LDA 1 LDA 2

Mailbox

MTA

E-Mail 1 E-Mail 2

