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File encryption is a popular means 
for ensuring the security and pri-
vacy of file-based data. An in-

truder who breaks through your firewall 
won’t be able to read your private files if 
they are encrypted, right?

Actually, selective file encryption pro-
vided by utilities such as GnuPG covers 
some of your tracks, but it may not cover 
all of them. An intruder can still learn 
about your system – and maybe even re-

construct some of your file data – by 
snooping through secret files, temporary 
files, configuration data, and command 
histories. The /var/spool/cups directory, 
for example, could yield a treasure trove 
of data about files you might have 
printed in the past, and tools such as the 
Gnome Thumbnail Factory could be 
storing an unencrypted thumbnail of 
your encrypted images.

Rather than combing through every 
action performed on every file to remove 
any trace of the data, Linux users can 
choose to encrypt data at a deeper level 
using DM-Crypt. The dm-crypt kernel 
module works at the block device level, 
enabling users to encrypt whole parti-
tions. The process is transparent to the 
application, provided the user has been 
granted access to the data. DM-Crypt en-
crypts the so-called backing device (the 
physical disk) and uses a virtual block 
device to provide access to the cleartext 
content below /dev/mapper. Users can 

access this block device to set up and 
mount the filesystem. This article exam-
ines the technology that underlies DM-
Crypt and the new LUKS (Linux Unified 
Key Setup) management tool.

En Route to a Crypto Setup
DM-Crypt builds on a flexible layer 
known as the device mapper. Device 
mapper modules are configured via so-
called DM Tables – simple text files that 
specify how the device mapper should 
handle access to areas of the virtual 
disk. The dmsetup program parses these 
text files and uses ioctl() calls to pass the 
details to the kernel.

The DM table format for DM-Crypt is 
very clumsy for daily use. The software 
expects the key to be a fixed length hexa-
decimal string. The module uses the key 
to encrypt the block device data. How-
ever, storing the key permanently in a 
DM table file is just like leaving your 
door key hanging on the door knob. In-
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stead, the key needs to be entered when-
ever you mount the device.

Typing up to 32 hex characters from 
memory may not be easy, but cryptsetup 
can help. cryptsetup is a tool that gener-
ates a cryptographic key from a (more 
simple) pass phrase, then passes the key 
to the kernel. Figure 1 shows you the 
cryptsetup environment.

Two important cryptsetup features can 
be parametrized: key generation and en-
cryption. The former specifies how 
cryptsetup will generate a key from a 
password supplied by a user. This de-
faults to a hash algorithm, which gives 
the user the freedom of selecting a pass-
word of any length. The hash will com-
press the information to provide a fixed 
number of bytes. Figure 1 shows crypt-
setup using its defaults: the Ripemd-160 
hash generates a 256-bit key.

Two parameters need to be selected 
for the encryption process: the algorithm 
and the mode. cryptsetup passes these 
parameters and the derived key to the 
kernel, and the DM-Crypt module coor-
dinates the procedure, using the Crypto-
API to handle encryption.

Use the Force, LUKS
Unfortunately, there is a downside to 
cryptsetup. It separates the details on 

what to do with a set of encrypted infor-
mation from the encrypted information. 
The cryptsetup parameters are mostly 
located in scripts or configuration files 
which, obviously, can’t be on the en-
crypted partitions. If you lose these files 
or can’t remember the settings for a por-
table disk, you will lose access to your 
encrypted data. LUKS (Linux Unified 
Key Setup) removes this segregation.

LUKS is a formal standard [3], imple-
mented by the cryptsetup-LUKS tool [4] 
(Figure 2). The latter is a fork of the 
original cryptsetup. LUKS defines a 
header for DM-Crypt partitions (Figure 
3); the header includes all the informa-
tion for safe key generation. As the 
header is part of the encrypted partition, 
the settings are always available right 
where they are needed.

cryptsetup-LUKS and the original 
cryptsetup also differ with respect to the 
way they generate a key from a pass-
phrase (Figure 2). LUKS password man-
agement is based on three concepts: key 
hierarchies, PBKDF2, and anti-forensic 
information storage.

Secure Password 
Management
The legacy cryptsetup application passes 
the key, which is generated from the 

password, directly to the kernel. The 
major drawback to this approach is that 
the software needs to re-encrypt all data 
whenever the password is changed. 
cryptsetup-LUKS introduces an addi-
tional password management layer to re-
move this need. The key hierarchy in-
serts an extra encryption layer between 
the derived key and the key used by the 
kernel to protect the data on the parti-
tion. Thus, the derived key only protects 
the so-called master key. which encrypts 
the data on the partition (Figure 2).

To change the password, cryptsetup-
LUKS decrypts the master key using the 
old password, re-encrypts the key using 
the new password, and overwrites the 
copy of the old master key with the new 
value. As the cleartext master key is not 
affected by this process, the encrypted 
partition data remains valid. This can 
save you half a day’s work if you need 
to decrypt 120GBytes; the key hierarchy 
reduces the time needed to change a 
password to just a few seconds.

LUKS stores the encrypted master in 
the partition header without imposing a 
single copy restriction. To support multi-
ple passwords for a single partition, 
LUKS can store multiple, equivalent cop-
ies of the master key and encrypt each 
one of them with a different string. Each 

Figure 1: cryptsetup (top) prompts the user for a password and uses a 

hash to create a fixed length key, which it then passes on to the ker-

nel (center). DM-Crypt (bottom) uses the key to encrypt and decrypt 

data on the hard disk (or backing block device).
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of these passwords gives the user access 
to the cleartext content on the disk. This 
is particularly useful if you wish to store 
a contingency password or give multiple 
users separate credentials. LUKS re-
serves enough key slots in the header for 
up to eight passwords (Figure 3.)

Better than a Hash
Just like cryptsetup, LUKS needs a hash 
algorithm to convert an arbitrary-length 
password into a fixed number of bytes. 
To do so, LUKS uses the generic PBKDF2 
approach (Password-Based Key Derive 
Function, Version 2). PBKDF2 is a 
PKCS#5 (Public Key Cryptography Stan-
dard 5) component. PKCS#5 was speci-
fied in RFC 2898 [5]. Among other 
things, PBKDF2 uses salting and stretch-
ing to prevent dictionary attacks.

Users prefer short, easily-remembered 
passwords. Dates of birth and pet names 
are much more common than random 
22-character strings. Unfortunately, you 
need at least 22 characters to represent 
a 128-bit key. But there are not many 
people who would relish the thought of 
remembering, or even typing 
Sq5woq7501VUE5irAXau.a every day. A 
useful derivation function satisfies both 
requirements: the user can type an eas-
ily-remembered password, while the 
function generates a more complex key.

An algorithm that blows up a short 
password to provide 128 bits of key ma-
terial, needs to bridge the so-called en-
tropy gap, that is the gap between the 
degree of randomness in the password 

domain and the 
key domain. Sim-
ple padding would 
produce a bigger 
key, but it would 
be no more ran-
dom than the 
password, and 
thus it would be 
just as easily 
guessed.

Let’s imagine 
that a user entered 
only English 
words; this would 
restrict the scope 
of the password 
domain and not 
provide enough 
entropy. An at-
tacker could sim-

ply run a dictionary attack instead of 
trying the 2128 keys that a 128-bit key 
space provides. An English dictionary, 
for example, may have less than 220 
entries. This total of 220 is 108 powers 
less than the full key space; a fatal re-
duction, as almost anyone could attack a 
20-bit key.

To counteract this problem, PBKDF2 
uses a deliberately complex function to 
derive the key from the password. Al-
though this takes a while, the legitimate 
user will not mind, because the opera-
tion is a once off. An attacker would 
need to try 220 phrases. If each call takes 
a second, this would take 12 days (220 
seconds). If the user combines two 
words to form a password, the attack 
could take up to 30,000 years (240 sec-
onds.) This artificial barrier is referred to 
as stretching. PBKDF2 uses a stretching 
function that involves infinitely variable 
computational effort.

Salting and Stretching
But this is not enough to stop deter-
mined attackers. An attacker could cre-
ate an enormous table containing the 
input and output from the stretching 
function to remove the need for number 
crunching during future attacks. To pre-
vent this from working, PBKDF2 adds a 
randomly selected string to the password 
before generating the key. LUKS stores 
the cleartext version of the string in the 
partition header.

Now, the attacker needs more than 
just the PBKDF2 hash for every word in 

the dictionary. In fact, the attacker 
would need the hashes for each word in 
the dictionary and for every combination 
of the appended string. The longer the 
salt, the bigger the attacker’s table 
would need to be. PBKDF2 pushes the 
size of the table to an unimaginable 
scale. The universe has fewer atoms 
than the number of entries the universal 
dictionary would need to contain every 
single PBKDF2 combination.

With all hope of using tables dwin-
dling, attackers are forced back to num-
ber crunching. The legacy Unix pass-
word mechanism uses a similar ap-
proach, by the way: however, the salt is 
a lot shorter in this case (12 bits stored 
in the first two digits.)

Shredding
As we mentioned earlier, data shredding 
on magnetic storage devices is very diffi-
cult to perform [2]. To effectively change 
or delete passwords in the key hierarchy, 
it is vital to completely destroy the old 
copy of the master key. With a bit of 
luck, a user might hit the right hard disk 
sector after several attempts and physi-
cally overwrite the old master key. But 
luck is something that users and cryp-
tographers don’t typically rely on.

The hard disk firmware actively com-
bats data shredding, as its major concern 
is data safety. One way a hard disk pro-
vides more safety is by remapping bad 
blocks, a simple technique for detecting 
sectors that are hard to read. The firm-
ware automatically copies these sectors 
to an area of the disk specially reserved 
for this purpose and redirects any future 
read or write operations for the original 
sector to the copy.

The original sector can’t be deleted 
from this point onwards, as the firmware 
will redirect any write attempts to the re-
served zone. Unfortunately, this could 
leave fragments of the key on the hard 
disk, meaning that a data recovery ex-
pert, or a determined hacker, could still 
access the fragments using modified 
firmware.

This is a big problem for LUKS master 
keys, which are very small in compari-
son to the sector size (128, 192 or 256 
bits for AES) and thus easily fit into a 
single sector. All it would take would be 
for the firmware to decide to redirect this 
sector to the reserved zone while the old 
password was active. Neither SCSI nor 

Figure 3: LUKS adds the parameters needed by cryptsetup-LUKS to 

generate the key from a password entered by a user to the header of 

the encrypted partition. Each key slot contains an encrypted copy of 

the master key which DM-Crypt uses for data protection.
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IDE have commands that provide access 
to the original sector.

Beating the Data Recovery 
Experts
The author of LUKS introduced Anti-Fo-
rensic Information Splitting (or AF Split-
ter for short) to confound recovery ex-
perts. To reduce the statistical probabil-
ity of traces of deleted files surviving on 
magnetic storage media, AF Splitter ex-
pands the data by a factor of four thou-
sand. The expanded data is not redun-
dant; the complete record is always 
needed to recover the master key. The 
counterpart to information splitting is 
merging. That is, the original data is 
merged in memory where data can eas-
ily be deleted.

AF Splitter distributes the original data 
(Variable x) based on the formula x = 
a1 + a2 + a3 + … + a4000. The algo-
rithm generates the variables a1 through 
a3999 randomly, and calculates a4000 to 
make the equation balance. The Merger 
adds the elements ai requiring every sin-
gle element to do so; there is no redun-
dancy. If a single element is missing, the 
equation can’t be solved and x can’t be 
calculated.

To shred the data, just one of the 4000 
sectors involved in the process needs to 
be overwritten, as the merging process 
needs the whole of the expanded record. 
Of course, it is a lot easier to hit one of 
the 4000 sectors. The statistics show that 
this works really well, as you can read at 
[1]. Thanks to AF Splitter, passwords 
can be changed without leaving any 

traces behind. In combination with key 
hierarchies and PBKDF2, this gives users 
quality password management for en-
crypted DM-Crypt partitions.

Safe Data Storage
What users mainly expect of an en-
crypted disk is encryption. DM-Crypt 
provides two cipher modes: ECB (Elec-
tronic Code Book) and CBC (Cipher 
Block Chaining). Both modes are subject 
to a few vulnerabilities, all of which are 
solved by the most promising candidate 
at present LRW-AES [6] [7] (LRW: Lis-
kov, Rivest, Wagner; AES: Advanced En-
cryption Standard).

ECB (Figure 4) doesn’t really deserve 
the Cipher Mode label: it stores each in-
dividual block cipher result without per-
forming any additional calculations with 
it. This means that for each key, clear-
text will always lead to the same cipher 

text. Expressed mathematically, ECB is a 
bijective function of cleartext into the ci-
pher text domain. This is a dangerous 
trait if an attacker knows the cleartext 
for an encrypted block due to standard-
ized filesystem headers, for example.

If the attacker knows that the first sec-
tor on the encrypted partition starts with 
a series of zeros, the attacker also knows 
where else zeros are encrypted. The at-
tacker does not need a key for this, but 
can simply compare all the cipher text 
blocks with the start of the partition. If 
the attacker discovers identical blocks, 
he or she knows that the decrypted con-
tent at this position on the disk com-
prises zeros. The same principle applies 
to any other block of cleartext.

Hide and Seek
There are basically two methods to hide 
these redundancies in the cleartext. One 

Figure 4: ECB encryption mode (Electronic 

Code Book) encyphers each block of clear-

text independently of all other blocks. This 

means that the same input Pi to the encryp-

tion function E will result in identical output 

Ci.
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Figure 5: CBC encryption mode (Cipher 

Block Chaining) XORs the results of one 

round of encryption XORs with the following 

block. This ensures that identical blocks of 

cleartext will produce different cipher text 

results.
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To generate a watermark, the attacker 
needs to create two identical sectors on 
the disk. The aim is to manipulate the en-
cryption mechanism in a way that gives 
two identical results 
from encrypting two 
sectors on the disk. 
In Figure 5 you can 
see the attacker can 
identify all input val-
ues for Pi, but not the 
IV. This is the value 
used to modify the 
first cleartext, as 
shown in Figure 6a.

Watermarking under-
mines this by apply-
ing P1-1 rather than 
P1 to the second sec-

tor. The IV for the sector two is one 
greater than the IV for sector one. This 
incrementation can be compensated for 
by subtracting 1 from P1 (Figure 6b). If 

the attacker sets all subsequent Pi just 
like with the first sector, the cipher texts 
are identical.

ESSIV (Encrypted Salt Sector IV) resolves 
this issue. It passes 
the sector number 
to a function, the re-
sult of which de-
pends on the secret 
key (Figure 6c). The 
attacker can no lon-
ger manipulate P1 
in sector two to 
compensate for the 
IV difference. The 
attacker does not 
have the key re-
quired to calculate 
the IVs.

ESSIV

Figure 6a: Traditional 

CBC starts encrypting 

by XOR-ing the IV with 

the first cleartext 

block.
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Figure 6b: Watermark-

ing compensates for 

the changing IV by 

reversing the change in 

P1.
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Figure 6c: ESSIV prevents the 

would-be attacker from calculat-

ing the IV because the attacker 

does not know the secret key 

material K. 
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approach is to add another component 
to the encryption process; this compo-
nent needs to be unique for each loca-
tion on the disk, for example the hard 
disk position. This would mean that 
identical cleartext blocks stored at differ-
ent positions on the disk would lead to 
different encryption results.

The second approach uses encryption 
modes that take encrypted blocks into 
account. The easiest way of implement-
ing this is to use recursion. CBC (Cipher 
Block Chaining) may be simple, but it re-
mains an effective, recursive encryption 
mode. It XORs the cipher text from the 
last block of cipher text with the current 
cleartext. CBC then encrypts the modi-
fied cleartext and applies the results to 
the next block of cleartext.

Take a look at Figure 5 to see how CBC 
works. Even if several contiguous blocks 
of cleartext were identical, recursion 
causes a kind of snowball effect. This 
link means that identical cleartext blocks 
are modified using different cipher text 
results.

Snowball Effect
One characteristic of this kind of recur-
sion is that the first round of encryption 
has an effect on all subsequent rounds. 
This is not useful for hard disk encryp-
tion, where the whole of the partition 
would need to be re-encrypted if the 
content of the first sector changes. The 
typical answer here is to view each sec-
tor as the result of a recursive function 
and to process each sector indepen-
dently from the rest.

This leads to a familiar problem: two 
sectors with identical cleartext result 
in the same cipher text. Although sec-
tors are a lot bigger than the blocks 
in a block cipher, the content can still 
be identical – just imagine a user 
creating multiple copies of a file, for ex-
ample. This is where the first trick ap-
plies: the sector number changes the en-
cryption by specifying the initialization 
vector (IV, Figure 5). Two different modi-
fications of the first cleartext trigger dif-
ferent snowball effects and lead to differ-
ent cipher texts.

The standard variant of DM-Crypt ap-
plies the sector number directly as the 
IV. This is referred to as plain IV genera-
tion. Unfortunately, this approach is vul-
nerable to watermarking attacks, where 
an attacker crafts data so that he or she 

can rediscover that data without know-
ing the key.

Watermarks can contain up to 5 bits of 
information [1]. An attacker could add 
watermarks to emails, which he or she 
would then send to the victim to find out 
where the victim stores the messages. 
Watermarks could also be added to MP3 
files, images, or other files that a suspi-
cious boss could easily send to a mem-
ber of staff. This makes attacks on a us-
er’s privacy possible. Without needing to 
decrypt, the spy has access to informa-
tion about the victim’s hard disk.

The ESSIV (Encrypted Salt-Sector IV) 
IV generator prevents this. Watermark-
ing assumes a simple relationship be-
tween the IVs for two contiguous sec-
tors. This is true in the case of plain; the 
IV for sector n is followed by the IV n+1 
for the next sector. ESSIV adds complex-
ity to the sequence, making it impossible 
for attackers to calculate the sequence 
without knowing at least part of the se-
cret key (see the “ESSIV” box.)

Data Whitening
You may be wondering why DM-Crypt 
uses a mix of recursion and manipula-
tion based on the hard disk position 
where the latter would be quite suffi-
cient on its own. There is a historic 
reason for using CBC: it is a tried and 
trusted approach, and the properties of 

Figure 7: The LRW encryption mode does not 

use recursion. It prevents ECB style attacks 

(Figure 4) by adding whitening. The whiten-

ing factor is calculated by reference to the 

hard disk position n and the secret key K.
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CBC have been investigated by many 
people. The alternatives, which entirely 
rely on the block number, are young in 
cryptographic terms.

LRW is one encryption mode that inte-
grates the block number into the encryp-
tion routine in a simple and effective 
way. First, LRW calculates a whitening 
factor based on the secret key and the 
block number. It then adds the whiten-
ing factor to the cleartext and encrypts 
the sums, before adding the whitening 
factor again (Figure 7). These two steps 
are known as pre-whitening and post-
whitening. They link the cipher text with 
a hard disk position to achieve different 
encryption results for identical cleartext 
stored on different parts of the disk

LRW removes the known vulnerabili-
ties associated with CBC while improv-
ing performance. Whereas CBC does not 
scale well for multiple processors, as 
each recursive step is based on the re-
sults of the previous step, LRW can use 
multiple, parallel processors. The LUKS 
author, who is also the co-author of this 
article, Clemens Fruhwirth, has imple-
mented and tested LRW for DM-Crypt, 
and the release is imminent.

Foiled by the Kernel
This said, LRW is not currently available 
for DM-Crypt. Linux’ high/ low memory 
management design means that kernel 

modules process more than two high 
memory data areas. The LRW implemen-
tation is based on an attempted generic 
re-implementation of Scatterwalk (part 
of Crypto-API), which should be capable 
of accessing an arbitrary number of high 
memory areas simultaneously. Due to 
the current restriction to two memory 
areas, a generic implementation would 
not achieve what the author intended, 
and this has led to him dropping the at-
tempt in frustration [8].

For the time being, DM-Crypt is the 
most secure cipher mode implementa-
tion for CBC-ESSIV – until someone who 
is not fazed by the useless and endless 
discussions on the kernel mailing list [9] 
steps in and develops a suitable Scatter-
walk variant. The authors of this article 
would be very pleased to see this hap-
pen. The math for LRW has been com-
pleted and implemented to comply with 
standards.

Installation
To use DM-Crypt, cryptsetup, and LUKS 
you need a few kernel modules and a 
user-space tool. The options for DM-
Crypt are hidden below Device Drivers | 
Multi-device support | Device mapper 
support in the kernel configuration and 
below Crypt target support (Figure 8) in 
the same section. Note that you need to 
select Prompt for development and/or 
incomplete code/drivers below Code 
maturity level options, otherwise the 
Crypt-Target stays hidden.

As DM-Crypt relies on Crypto-API 
functions, you need to select at least 
one algorithm in Cryptographic options | 
Cryptographic API (Figure 9). The au-
thors recommend AES. One encryption 
algorithm is all you need; the cryptsetup-
LUKS user-space tool handles the opera-
tions, such as hashing to generate the 
key from the password.

Most Linux distributions set these op-
tions by default. You can enter modprobe 
dm-crypt to check. The command should 

01  $ dd if=/dev/zero 
of=verysecret.loop bs=52428800 
count=1

02  1+0 records in

03  1+0 records out

04  $ losetup /dev/loop0 
verysecret.loop

05  $ cryptsetup -c aes-cbc-essiv:
sha256 -y -s 256 luksFormat /
dev/loop0

06  

07  WARNING!

08  ========

09  This will overwrite data on /
dev/loop0 irrevocably.

10  

11  Are you sure? (Type uppercase 
yes): YES

12  Enter LUKS passphrase: ******

13  Verify passphrase: ******

14  $ cryptsetup luksOpen /dev/

loop0 verysecret

15  Enter LUKS passphrase: ******

16  key slot 0 unlocked.

17  $ mkfs.xfs /dev/mapper/
verysecret

18  [...]

19  $ mount /dev/mapper/verysecret 
/mnt

20  $ umount /mnt

21  $ cryptsetup luksClose 
verysecret

22  $ cryptsetup luksAddKey /dev/
loop0

23  Enter any LUKS passphrase: 
******

24  key slot 0 unlocked.

25  Enter new passphrase for key 
slot: ******

26  $ cryptsetup luksDelKey /dev/
loop0 0

27  losetup -d /dev/loop0

Listing 1: cryptsetup-LUKS

Figure 8: The device mapper is located below Device Drivers | Multi-device support (RAID and 

LVM) | Device mapper support in the kernel configuration. Crypt target support is required for 

DM-Crypt.
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work fine. DM-Crypt became an official 
Linux component with kernel 2.6.4; the 
ESSIV IV generator needs at least kernel 
version 2.6.10.

The LUKS user-space component is 
available as a download from [4]. There 
are packages for Debian, Gentoo, Suse 
and Red Hat; cryptsetup-luks is a stan-
dard component in Fedora 4. Users with 
other distributions can follow standard 
procedure, ./configure && make && 
make install to build and install, assum-
ing that Libpopt, Libgcrypt (Version 
1.1.42 or later), and Libdevmapper are 
installed.

cryptsetup-LUKS
The binary answers to the name of crypt-
setup and supports several actions. It 
joins the ranks of tools that allow Linux 
admins to assign filesystems to block de-
vices and to mount these filesystems. 
Listing 1 gives you an example. To keep 
this as uninvasive as possible, the dd 
call in line 1 creates a 50MByte con-
tainer, which is enabled as a block de-
vice using a loop in line 4.

Initially, the most important crypt-
setup action is luksFormat, which pre-
pares the backing block device (the 
loopback device in our case) for use in 
the encrypted environment. This is also 
the step where you need to decide on an 
encryption algorithm. The formating ac-
tion needs the block device, and option-
ally a file, the content of which will be 
used as the password. LUKS refers to 

this file as the key file. The following 
parameters are useful:
• -c specifies the algorithm and for re-

cent kernel versions, the chaining 
mode and IV generator. These three 
parameters must be separated by sim-
ple dashes (default: aes-cbc-plain). 
The safest variant at present is 
aes-cbc-essiv:sha256.

• -y tells cryptsetup to ask twice for the 
password to avoid typing errors. This 
parameter does not make sense in 
combination with a key file.

• -s specifies the length of the encryp-
tion key.

In line 5 of Listing 1, you can see the 
complete call. By typing YES in line 11, 
the user confirms that existing data 
might be lost. The user then sets the first 
password (line 12.)

Mapping for a Filesystem
To use the block device we just pre-
pared, cryptsetup-LUKS needs to map 
the physical block device to the virtual 
block device. The luksOpen action takes 
care of this (line 14.) If the password is 
stored in a file (see luksFormat), crypt-
setup needs the -d parameter followed 
by the name of the key file. In our exam-
ple, the user types a password (line 15.)

cryptsetup-LUKS automatically creates 
the block device with the specified name 
of verysecret below /dev/mapper/. The 
mkfs.xfs call in line 17 puts an XFS file-
system on the device. The result can be 
mounted as shown in line 19. Don’t for-

get to unmount before applying changes 
(line 20.)

Cleaning Up
After finishing your work, it makes sense 
to unmap to avoid opening up a vector 
to attackers and spies. The luksClose ac-
tion takes care of this.

As mentioned previously, cryptsetup-
LUKS can manage multiple passwords 
per block device. This makes it easy to 
change a compromised password without 
re-encrypting your data. The luksAdd 
Key expects the physical block device as a 
parameter (Listing 1, line 22.) After typ-
ing any current password, the tool 
prompts for an additional, new password. 
You can also specify a key file.

The luksDelKey action (line 26) re-
moves an existing password. It expects 
the physical block device and the key slot 
to be deleted as parameters. The latter is 
the storage location for the key. As crypt-
setup-LUKS manages eight passwords by 
default, key slots 0 through 7 are typically 
all you need. The program will tell you 
which key slot a password is stored in 
when you call luksOpen (line 16) or 
luksAddKey (line 24.)  ■

Figure 9: As DM-Crypt relies on the Crypto-API for encryption, you need to select at least 

one algorithm in Cryptographic options | Cryptographic API. AES is the algorithm of choice 

right now.
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