
features that simplify the task
of managing backups on multi-

ple machines.
MySQL Backups Manager is distri-

buted under a commercial license, but at
a cost of around US$15, it is well worth
the investment. The MySQL Backups
Manager utility is written in Perl using
standard MySQL tools, and it can run on
any system that supports Perl and
MySQL. Although Apache is not
required, you will also need an Apache
server if you wish to take advantage
of MySQL Backups Manager’s web
interface.

Installation and Basic
Configuration
The MySQL Backups Manager package
comes as a small zipped archive. When
you unpack the file, you have the back-
upsmanager.cgi script and a modules
directory which contains the perl mod-
ules for FTP and mail. Although the
instructions tell you to copy the CGI
script into the place from where it will
be executed (usually the cgi-bin direc-
tory of your web server), this will not
work unless the modules directory is in
your perl path. The easiest approach is
to simply copy everything into your
cgi-bin directory.

The first step in configuring the pack-
age is to run the CGI script in a web
browser. For example: http://linux.local/
cgi-bin/backupsmanager.cgi. This step
creates the configuration file (backups-
manager.pm) and brings up that config-
uration file in a text area within a stan-
dard HTML form.

All the default values for the various
configuration options for both the Web
interface and the command are defined
within this file. By default, only one

E
ven if you are running a small,
non-commercial website, the data
you store in a MySQL database is

very important to you. If that database is
frequently changed on a live system, a
reliable backup becomes even more
important. Unfortunately, the tools that
web hosters provide to backup your data
are often cumbersome at best.

I recently made a number of major
changes to the database on my test sys-
tem and became concerned about what
would happen if I really hosed that data-
base. I make regular backups myself on
my local machine, by simply copying the
MySQL files. This option works, but
recovering from a crash has its own
problems. So I started looking for other
solutions. After considering several of
the alternatives for backing up an SQL
database (see the the box titled “MySQL
Backup Alternatives”), I settled on
indexsoft’s MySQL Backups Manager
utility [1].

You can run MySQL Backups Manager
on a web server using any browser, or
you can run it as a command line script.
It would be accurate to call MySQL
Backups Manager a front-end to the
mysqldump program, but this handy
backup tool definitely does a lot more.
For example, connection information for
your databases is stored within the pri-
mary configuration file, and you need
only reference that database in order to
back it up. Plus, MySQL Backups Man-
ager includes a number of additional

MySQL Backups ManagerSYSADMIN

64 ISSUE 55 JUNE 2005 W W W . L I N U X - M A G A Z I N E . C O M

Your web hoster is fine with serving up HTML, but when it

comes to backing up a simple MySQL database, you are often

on your own. Or are you? BY JAMES MOHR

Backing Up MySQL Databases with MySQL Backups Manager

DATA SAVER

database is defined; the database looks
like this:

$mySQLDBName[0] = 'mydb0';
$mySQLHost[0] = 'localhost';
$mySQLUser[0] = 'root';
$mySQLPassword[0] = '';
$mySQLDBEmail[0] = '';

Make sure the permissions are set cor-
rectly on the configuration file to prevent
unwanted access.

There are additional variables, such as
variables defining the default directory
for the dump files and options to the
various auxillary programs. In general,
the function of each is easy to identify.

Once you are done configuring the
program, you create backups from the
Web interface or simply run:

backupsmanager.cgi --db=#

Where # is the number of the database
as defined in the configuration file. The
location is defined by the $DBDumpsDir
variable, and by default this is the
dumps directory underneath the direc-
tory where backupsmanager.cgi resides.
You can’t change the target directory,
but you can use the --filename= option
to specify a file other than the default,
which is YYYY-MM-DD.sql.

Transferring the Dump
Even if you can run a cron job on your
web server to start MySQL Backups
Manager, storing the files locally might
not always be the best option. If you
want to keep several backups, but you
have limited space on your server, you
probably need a way to get the files to
another machine. As I mentioned, you
can send the dump files via email. Even

if you cannot send email to other
machines you might be able to send the
email locally (i.e., to your “webmaster”
address). Note that setting the email
address to something like just webmas-
ter probably won’t work. Instead you
need to specify a host name (i.e., web-
master@localhost), even if you are send-
ing the dump to a user on the local host.

MySQL Backups Manager uses the
SendMail.pm module to actually send
the email. If that does not work, you can
set the $SMTP variable to a command to
send the email. For example:

$SMTP = U

'|/usr/sbin/sendmail -t';

Sending the dump file by email can be
done either from the web interface or the
command line using the --mail option.
Note that, if the $mySQLDBEmail[] vari-
able is set in your configuration file, then
its value is always used, even if you
specify the email address on the com-
mand line using the --email option. If
the $mySQLDBEmail[] variable is empty,
then you need to specify the address on
the command line or set the $Default-
Email in the configuration file.

In addition to sending the dump file
via email, you can also use FTP to trans-
fer the dump file. MySQL Backups Man-
ager uses the default connection infor-
mation in backupsmanager.pm to trans-
fer the file.

As of this writing, you cannot specify
different FTP servers for the individual
databases, as you can individual email
addresses. However, as you might guess,
there are command line options to spec-
ify the FTP connection information.
Thus, you can still get your database
dumps to whatever server you want.

Dumping All
Also included in the default configura-
tion file is a template for you to dump all
of your databases. It works basically the
same way as for the individual database,
except that you specify the database
name like this:

$mySQLDBName[1] = U

'--all-databases';

Note that this does not mean dumping
all the databases that MySQL Backups
Manager knows about. Instead, it means

dumping all of the databases for the
given host and user. So, if you are trying
to do dumps from multiple servers, you
need to have multiple “all-databases”
blocks. Also, this only works as the root
user, so you probably won’t be able to
use it on your web hoster’s machine.

Other Options
Having a front-end for the mysqldump
command means that you can basically
use any option that mysqldump sup-
ports. This is what the $DumpDBOptions
variable does, and by default, it has the
two options --quote-names and
--add-drop-table. Here, you can add any
option you like. For example, if you want
to create a dump that does not use
extended inserts, you could add
--extended-insert=FALSE. The problem
here is that the $DumpDBOptions
applies to all databases. So you either
have extended inserts or you don’t.

You can get around this limitation if
you consider the fact the actual mysql-
dump command is built by simply con-
catenating the different variables. So,
you could do something like this:

$mySQLPassword[0] = 'PASSWORD U

--extended-insert=FALSE';

When the mysqldump command is gen-
erated, you simply have the -extended-
insert option following the password,
and the mysqldump command does not
notice any difference. Theoretically, you

could add it as an option to the
$mySQLDBName[0] variable. However,
this ends up creating a dump directory
that looks like this:

$DBDumpsDir/localhostU
-----extended-insert=U
FALSE linkbat

instead of

$DBDumpsDir/localhostU
---linkbat

simply because the directory name is
created as $mySQLHost[]---$mySQLDB-
Name[]. Note that the ability to define
different options for different databases
is something that is in the planning for a
future release.

If you automate the process of doing
database dumps, there are a couple
more variables to take a look at. The first
is $ArchiverCommand, which defines
the archive or compression command
and options to use. The default is to use
gzip and a compression level of 9. By
default, the dump file is not compressed.
However, you can enable it from the
command line using the --pack option.

Next, is the $OldBackups variable,
which tells MySQL Backups Manager to
delete dump files that are older than the
specified number of days. You can use
the --old option in the command line to
specify the number of days. Note that
there is no mechanism that deletes the
old files independently of the actual
dump. Instead, old files are deleted as
part of the dump process.

The Web Interface
So far, I have only really mentioned the
command line, but the main reason I
started looking at the indexsoft MySQL
Backups Manager was because I wanted
to automate the process of backing up
my data. To start the web interface, you
use the same URL as mentioned above
for configuration. This brings you to the
web page you see in Figure 1.

The first section allows you to select
the appropriate database (as listed in the
backupsmanager.pm file). In the second
section are the backup options. By
default, dump files are stored in sub-
directories of the directory defined by
$DBDumpsDir. (one sub-directory for
each database) However, by selecting

SYSADMINMySQL Backups Manager

65ISSUE 55 JUNE 2005W W W . L I N U X - M A G A Z I N E . C O M

Figure 1: The MySQL Backups Manager web

interface.

the inserts will add the records to the
table. You can also send existing files via
email to the default address, as well as
upload the dump files to your default
FTP server.

The Upload backup for database sec-
tion allows you to upload a file from the
local machine to your web server. For
example, if your web hoster does not
backup your data for you and something
happens to the database. Another case
would be when making changes to the
database structure. You download the
entire database to your local machine,
make the changes, and create a new
dump, which is then loaded to the live
server. You can then restore this copy
with both the most recent data and the
database changes.

A problem arises if the dump file is
compressed, because mysql cannot deal
with it. So, you need to uncompress it
first. You will see that, in front of each
dump file, there is a radio button labled
GZ. This means the file is compressed.
By unchecking the radio button, you
uncompress the file. If you check the
button, then the file will be compressed.

By default, you cannot upload files
from one database to another. If you
have a test system and you want to syn-
chronize the data from the live system.
you can either use the mysql command

the backup and download it to my com-
puter option, MySQL Backups Manager
creates the file and sends it to your
browser, which usually gives you the
standard “save as” dialog window.

Dump Files
The next section (Backups list of data-
base) shows you the dump files listed in
the respective dump directory. Dump
files end up here, whether created from
the command line or the web interface.
In both cases, the owner of the file is the
user executing mysqldump. Note that, if
the files are created from the web inter-
face, the owner is the user under which
the web server is running. If run from
the command line, the owner of the file
is the normal user. If you use both mech-
anisms to create the dump file, you may
run into problems with the permissions.

Here, you can perform several differ-
ent operations on the files. For example,
you can load the data into your database
from an existing file. Be careful, because
MySQL Backups Manager simply uses
the mysql command with the specified
file. Since the default is to use the
--add-drop-table, by default, the tables
are dropped and then re-created before
the inserts are done. If you don’t use the
--add-drop-table option, you will get an
error when trying to create the table, and

MySQL Backups ManagerSYSADMIN

66 ISSUE 55 JUNE 2005 W W W . L I N U X - M A G A Z I N E . C O M

directly, or you move the files manually
from one directory to another (watch out
for duplicate file names!).

Low TCO
Although indexsoft MySQL Backups
Manager is a commercial product (a
single license costs US$ 15), I have
found it well worth the investment. I
could have created this script on my
own, but when I consider how long it
would take me to write the code on my
own, a homegrown solution is not even
worth discussing. Time is money, and
indexsoft MySQL Backups Manager has
saved me many times its price.

Within just a few minutes, you can
configure automatic backups of your
MySQL data. No need to spend hours or
even days programming the necessary
features. The indexsoft MySQL Backups
Manager provides a ready-made
solution. ■

My hoster provides a means of making a
dump of each of my databases using a
web front-end that I need to start manu-
ally. This tool is very useful for backing-
up data, however, I am too forgetful to
make backups with this method as often
as I should. So I need another way.

MySQL itself provides a couple ways
of backing up your data, such as the
mysqldump command. You can use
mysqldump either locally or from a
remote machine:

/usr/bin/mysqldump U

-host=node.domain.comU

-user=username U

--password=password database

What this command gives you is all of
the SQL commands needed to restore
your database. The downside is that you
often need to start with a completely
empty database. You can address this
problem when the database is created
by simply telling MySQL to drop the
table first, before it tries to create it. This

can be done automatically by using the
--add-drop-table option to mysqldump.
Granted, all of the data in any existing
tables will disappear, but that’s more or
less the point.

If your database contains millions of
records, you might be concerned with
how long the process takes. One way of
increasing the speed of the recover is to
increase the speed of the inserts. In
MySQL 4.0 and earlier, the default
behavior was for the mysqldump com-
mand to generate one insert line per
record. With millions of records, this
would take ages. The solution is to use
the --extended-insert option to mysql-
dump. This packs all of the inserts into a
single statement.

Note that you may not always have a
choice of using extended inserts. Some
web hosters force the newer versions of
mysqldump to not use the extended
inserts for compatibility reasons. Also, it
is possible that your hoster only allows
mysqldump access from the local host.

An alternative is to create a script on

your local machine that runs mysql-
dump. This script can be a CGI script you
start from a browser or a local cron job
(provided your web hoster allows this).
Maybe you have ssh access, which can
easily be used to create automated back-
ups. I wrote a short script that uses
mysqldump to dump each of my data-
bases to standard out and redirect the
output of ssh. Something like this:

ssh user@node.domain.com U

"mysqldump --user=user U

--password=PASSWORD database"U

> backup.date

I have run across some very inexpensive
(read: cheap) web hosters that provide
you with a MySQL database but
absolutely no guarantee that your data is
safe. They provide no direct backup
mechanism, no cron access, no shell
access, and you cannot use mysqldump
remotely. In such cases, are you out of
luck? Well, it still depends on your web
hoster, but also on your own ingenuity.

MySQL Backup Options

[1] The indexsoft Homepage:
www.indexsoft.com

[2] The mysqldump command:
dev.mysql.com/doc/mysql/en/
mysqldump.html

[3] Professional web hoster using the
MySQL Backups Manager:
www.imagelinkusa.net

INFO

