
B
ootchart [1] runs in the back-
ground while a computer is boot-
ing, keeping a watchful eye on

the hard disk and the CPU load, noting
the launch order for daemons, and let-
ting you know if something is causing a
delay. After collecting the results,
Bootchart presents the relevant informa-
tion in a user friendly graphic like the
chart shown in Figure 1.

Version 0.4 of Bootchart is a 60KB tar
archive, which you can quickly unpack
by typing

tar xvzpf bootchart-0.4.tar.gz

Now that was quick, or was it? A glance
at the readme file reveals that Bootchart
needs a Java Development Kit. Fortu-
nately, the tool isn’t fussy about your
choice of Java; it works fine with GCJ
[2], the IBM Developer Kit [3], and Sun’s
J2SE SDK [4] – I opted for Sun’s coffee
roaster. I didn’t want to do without an I/
O load display, so I followed the recom-
mendation in the readme and installed
iostat from the sysstat package [5].

The next step is to install the
Bootchart logger, that is, the software
that actually collects the data at boot
time. An install script is provided. The
script detects a number of popular Linux

distributions and automatically adds the
logger. The script is launched by typing
./install.sh in the Bootchart directory. If
install does not recognize your distribu-
tion, you may need to manually launch
the tool.

The next step is to compile the Java
components. If you use GCJ, this is sim-
ple: just type make in the Bootchart
directory and your work is done. If you
opt for the Sun or IBM JDK, your
mileage may vary. If you also have
Apache Ant on your system, you can
simply type the following in the
Bootchart directory:

ant

If you don’t have Ant, you need a few
extra commands:

mkdir build
javac -d build -classpath src
/usr/local/bootchart/Main.java

You may need to change the path in the
last command to match the directory
where your Bootchart sourcefiles landed
after unpacking.

Three Fingered Salute
Now that we have finished with the pre-
liminaries, it is time for a test. I rebooted
the system to launch the logger and then
stopped the logger manually by entering

/etc/rc.d/bootchart/bootlog stop

The path in this command can vary
depending on your Linux distribution. A
quick ls of /var/log/ revealed two new
logfiles, boot.top.log and boot.io.log.
These files contain the CPU and hard
disk load information from the boot. To
create a graphical overview with this
data, I then typed

./render.sh

in the Bootchart directory. If render.sh
finds an SVG viewer, it will immediately
launch the viewer after finishing to show
you the results. Time to start hunting for
those lost seconds. ■

What could be more boring than watching a computer run through an

error-free boot routine? Why watch for messages that may never

appear? Every second you save adds to your valuable leisure time.

Bootchart helps you find those valuable leisure moments.

BY CHARLY KÜHNAST

The Sysadmin’s Daily Grind: Bootchart

BOOT CAMP

61

SYSADMINCharly’s Column: Bootchart

61ISSUE 52 MARCH 2005W W W . L I N U X - M A G A Z I N E . C O M

[1] Bootchart:
http://www.klika.si/ziga/bootchart

[2] GCJ: http://gcc.gnu.org/java

[3] IBM Developer kit for Linux:
http://www-106.ibm.com/
developerworks/java/jdk/linux140

[4] Sun J2SE SDK:
http://java.sun.com/j2se/1.4.2

[5] Sysstat: http://perso.wanadoo.fr/
sebastien.godard

INFO

Charly Kühnast is a
Unix System Man-
ager at the data-cen-
ter in Moers, near
Germany’s famous
River Rhine. His
tasks include ensur-
ing firewall security
and availability and taking care of
the DMZ (demilitarized zone).

TH
E

A
U

TH
O

R

Radius and 802.1X62

We’ll show you how to keep unautho-
rized users off your physical network.

Admin Workshop 66

This month we examine the super
server inetd and its successor xinetd.

SYSADMIN

Figure 1: After a successful boot, Bootchart dis-

plays a graphic showing the CPU and disk load.

