
42

Note that the console does not show you
all the errors that have occurred. GIMP
scripters will probably prefer to launch
their programs in terminal windows to
get the full story.

The most important tool for budding
GIMP programmers is the browser for
the procedural database, or PDB for
short (Figure 1); the PDB browser is
located in the main menu below Xtns |
Python-Fu | PDB Browser. It lists the

has established itself as a genuine alter-
native to Scheme, and it is available for
most Linux flavors. Suse users are out of
luck, as they will not have GIMP Python
on their system by default.

Fedora users can sit back and relax;
Debian and Ubuntu users may need to
install the gimp-python package.

Plugin Database
The entries you need for the Python plu-
gin are located in the main menu below
Xtns | Python-Fu. You can run the Test |
Sphere entry to test your installation.
After confirming the prompt by clicking
OK, the script should draw a red sphere
with shadowing on your screen.

GIMP outputs any error messages that
occur in the terminal window from
which it was launched. If you launch the
script via a GUI-based menu, you will
need to open the GIMP error window by
selecting File | Dialogs | Error console.

T
he GIMP image manipulation
program has a variety of useful
functions. But navigating a com-

plicated menu tree can be a pain if you
need to apply the same tools to a large
number of images. Fortunately, the
GIMP has an integrated programming
interface that allows users to script
recurring tasks. This said, the Scheme
[1] programming language is not every-
one’s idea of fun; its bracket-oriented
syntax is difficult to learn.

Little surprise that fans of other script-
ing languages have come up with alter-
natives. The Perl interface, GIMP-Perl, is
fairly advanced and supports a server
mode in which GIMP parses scripts
without needing to run the GUI.

The Ubiquitous Python
Perl mode is missing from the GIMP ver-
sions included with most Linux distribu-
tions. In contrast to this, GIMP Python

Many users turn to GIMP for pictures in the window, but some may not realize GIMP also has scripting capa-

bilities that allow you to automate recurring tasks. The Python scripting language is a useful alternative to the

GIMP’s integrated Lisp dialect. BY OLIVER FROMMEL

PAINTING
BY NUMBERS

GIMP ScriptingKNOW-HOW

42 ISSUE 52 MARCH 2005 W W W . L I N U X - M A G A Z I N E . C O M

Writing GIMP scripts

PAINTING
BY NUMBERS

If you prefer to build the GIMP from
source code, you will find the source
code for the current version 2.2 at the
GIMP website [2]. After unpacking the
archive file, run the configure script with
the Python options: ./configure
--enable-python.. To avoid conflicts, you
should remove any existing versions of
the GIMP before you run make install to
install the new version.

Building the GIMP

w
w

w.photocase.de

functions available to script program-
mers for GIMP scripting. For example,
file_jpg_load loads a JPG file. You can
run methods like this directly in the
embedded Python console (Xtns |
Python-Fu | Console).

The browser is your major source of
information about the functions that
your version of the GIMP gives you.
Many tutorials and HOWTOs on the
Internet are out of date, so it is a good
thing that the search tool allows you to
restrict the choice of functions to the
things you are interested in. If you
search for layer, for example, the
browser will give you the functions that
match this name. You can then click on
a function in the left-hand field to view
the information on that function in the
PDB browser on the right. Of course, the
input (In) and return value (Out) para-
meters are just as important as the func-
tions themselves.

Registering Plugins
The basic structure of a Python plugin is
quite simple: a call to register to intro-
duce the GIMP to the new plugin, and
one or multiple functions that do all the
work. Our first example will be a simple
one that just pops up a dialog. Searching
with the PDB browser takes us to the
gimp_message function, which has only
one parameter, the text the window is
supposed to display.

The register method expects no less
than eleven parameters in the following
order: plugin name, description, help
text, author, copyright, date, menu path,
permitted image formats, plugin parame-
ters, memory buffer for return value, and
working function. After registering, the
first call has to be to main().

Our example uses a plugin called
python_fu_simple. This is the name that
we (and other plugins) will use to call
the plugin after registration. The next

four parameters
should be easy
enough, as they
comprise strings
for informational
purposes. The
menu path is
more important,
as there are two
basic flavors: for
the GIMP’s main
menu, or for the

context menu (right mouse button) in
any image. The first part of the menu
string for the main menu has to be
<Toolbox>, whereas this is <Image>
for the image drop-down. This prefix is
then followed by the slash-separated
path that the GIMP will access as
required: <Image>/Python/Simple.

The next parameter specifies the
image types (not formats) that the script
can handle, that is, color images with
(RGBA) or without (RGB) the alpha
channel, or grayscale image (GRAY). If
the plugin is not fussy, you can simply
use a wildcard (*).

Finally, you have the input and output
parameters and the name of the working
function. Listing 1 has a minimal, but
functional, example.

The plugin function is called python_
fu_simple (line 9), and the working
function python_simple. The working
function always has the parameters img
and drawable (line 5), which the GIMP
automatically passes to the function –
the list of input parameters in line 17 is
empty. Line 3 shows how to load the
GIMP module in Python.

To follow along with the example, save
the listing as simple.py below your
~/.gimp/plug-ins directory. Your direc-
tory may possibly be called .gimp-2.0 or
something similar. Make the script exe-
cutable (chmod +x) and launch the
GIMP. Now, when you create a new
image (File | New), there should be a
Python | Simple entry for the plugin in
the context menu.

Dialogs with the GIMP
Of course, this minimal example does
not do anything really useful, so let’s
take a look at a less trivial example to
demonstrate a few useful aspects of
GIMP Python. The plugin will be adding
a so-called vignette to the image, that is,
a shadow that hides the unimportant
part of the image and highlights the
important part. The example demon-
strates plugin parameters and GIMP
functions that use selection filters.

The basic idea is quite simple. The
script uses a function to select an ellipse
the same size as the image, then inverts
the selection and fills it with the fill tool.
Appropriate transparency values and a
gradient make the border between the
vignette and the image as seamless as
needed for the effect.

Plugin registration is similar to our
previous example, but this time we need
a few input parameters. GIMP will auto-
matically generate a matching dialog box
for the input parameters. For each para-
meter within square brackets, we will
have four values, which are enclosed in
round brackets. The first value specifies
the parameter type, the second is the
string with the variable name. This will
be used by the script, for example, by
the working function. Another string fol-
lows – this is a description of the para-
meter, and finally we have a default
value. The whole section with the input
parameters is as follows:

[
(PF_INT, "feather_in", U

43

KNOW-HOWGIMP Scripting

43ISSUE 52 MARCH 2005W W W . L I N U X - M A G A Z I N E . C O M

Figure 1: GIMP’s integrated script browser with a search field on the

lower left. On the right it describes the PDB function.

01 #!/usr/bin/python

02

03 from gimpfu import *

04

05 def python_simple(img, U

drawable):

06 gimp.message("Example")

07

08 register(

09 "python_fu_simple",

10 "Displays a dialog",

11 "Help: Displays a dialog",

12 "Oliver Frommel",

13 "LinuxMagazine",

14 "2005",

15 "<Image>/Python/Simple",

16 "*",

17 [],

18 [],

19 python_simple)

20 main()

Listing 1: A simple GIMP
script

Setting antialias to TRUE tells the
GIMP to smooth the selection line.
feather works in a similar way to provide
a smooth transition. The last parameter
feather_radius specifies the width of the
transition area. The script does not have
a fixed value at this point, but a user-
definable input variable called feather_in
(line 5 in Listing 2).

All of the methods we have used so far
belong to the pdb object, that is, they are
called by a pdb.method() call. This can
hardly be referred to as object oriented
programming, as object-orientation is
characterized by an thematic relation-
ship between the methods and objects.
However, GIMP Python does support
object-oriented formulations: for exam-
ple img.add_layer(...) will work instead
of pdb.gimp_add_layer(img, ...). This is
a call to the gimp_add_layer() method of
the img object, dropping the img para-
meter along the way. The PDB browser
does not document this type of usage, so
you may need to research this yourself.

The gimp_selection_invert method
simply inverts the current selection.
Finally, gimp_edit_bucket_fill fills the
selected area with the current fore-
ground color, as specified by the second
parameter value FG_BUCKET_FILL.
Specifying PATTERN_BUCKET_FILL
instead would tell the tool to use the cur-
rent fill pattern.

The next parameter specifies how to
apply the new color layer to the back-
ground. The NORMAL_MODE value sim-
ply replaces the existing color layer. The
MULTIPLY_MODE used in our example
tells the GIMP to mix the existing and
new colors. The Layer menu gives you a
list of available modes, and the PDB
browser gives you the matching key-
words (again you need to remove the
GIMP_ prefix). You might like to experi-
ment with DISSOLVE_MODE.

The input value for the next parameter,
opacity_in, specifies the opacity for the
fill. A large number creates a darker bor-
der, and a small number a lighter one.
Just for the sake of completeness, the
script removes the selection, using a call
to gimp_selection_none. You can undo
all of these steps by calling Undo, by the
way, as GIMP will note the steps just like
in interactive mode although they are
scripted. You can disable this function
by calling gimp_image_undo_disable.

If you run the script on an image that
you have opened, the effect will be
something like the image in Figure 2. We
slightly overdid the effect to make it
more obvious in this image. Less opacity
would have been preferable.

Debugging Difficulties
Automating GIMP with Python scripts
should be an easy thing to do. Unfortu-
nately, the obsolete documentation is an
obstacle. And the development cycle
adds more hurdles. Every time you
change a script, you need to relaunch
the GIMP. The ability to load scripts at
runtime would be extremely useful

The documentation really needs
updating. At the time of writing, Python
GIMP programmers have no alternative
but to browse the Web for various
sources of information (such as GIMP-
Perl) and adapt it. If this doesn’t worry
you, Python GIMP gives you a treasure-
trove of functions to play with. ■

"Feather", 100),
(PF_INT, "opacity_in", U

"Opacity", 50)
],

PF_INT refers to an integer. The parame-
ter types are described by the examples
in the GIMP Python documentation at
[3]; unfortunately the documentation is
slightly dated; the plugin it contains will
not even run under GIMP 2.x. You might
prefer to check out the current GIMP-
Perl website at [4]. At least the pages are
up to date, although you may need to
put some thought into migrating the
techniques. On the positive side, the
parameters are the same no matter
which scripting language you choose.

Putting PDB Functions
to Work
The working function has not actually
earned that title so far; time to change
that. A PDB search for select reveals a
few possible candidates. The one we
need is called gimp_ellipse_select. Its
first parameter is the image itself. The
next four give you the size of the selec-
tion as X and Y values, the width, and
the height. The option parameter speci-
fies if you will be adding the selection
(CHANNEL_ADD_ OP), or replacing an
existing one (CHANNEL_REPLACE_OP),
and so on. The PDB browser uses
slightly different names here (as it does
for other parameter types): for example
GIMP_CHANNEL_ ADD_OP. In Python
scripts, you need to leave out the GIMP_
prefix.

GIMP ScriptingKNOW-HOW

44 ISSUE 52 MARCH 2005 W W W . L I N U X - M A G A Z I N E . C O M

[1] Scheme: http://www.teach-scheme.
org/Notes/scheme-faq.html

[2] GIMP: http://www.gimp.org/

[3] GIMP Python docs:
http://www.gimp.org/docs/python/
structure-of-plugin.html

[4] GIMP-Perl docs: http://imagic.
weizmann.ac.il/~dov/gimp/perl-tut-2.0

INFO

01 def python_vignette(img, U

drawable, feather_in, U

opacity_in):

02 width = drawable.width

03 height = drawable.height

04

05 pdb.gimp_ellipse_select(img,U
0, 0, width, height, U

CHANNEL_OP_REPLACE, TRUE, U

TRUE, feather_in)

06 pdb.gimp_selection_invert(img)

07 pdb.gimp_edit_bucket_fillU
(drawable, FG_BUCKET_FILL,U
MULTIPLY_MODE, opacity_in, U

0, 0, 0, 0)

08 pdb.gimp_selection_none(img)

Listing 2: Working Function

Figure 2: A sample image before and after running the vignette script.

